已知f(x)均是连续函数),证明:∫(0,2a)f(x)dx=∫(0,a)[f(x)+f(2a-x)]dx.

 我来答
黑科技1718
2022-07-23 · TA获得超过5831个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.1万
展开全部
令t=2a-x,则x:0→a,有t:2a→a.又dt= -dx,即dx=-dt.∫(0,a)f(2a-x)dx= -∫(2a,a)f(t)dt= -∫(2a,a)f(x)dx=∫(a,2a)f(x)dx所以,∫(0,a)[f(x)+f(2a-x)]dx=,∫(0,a)f(x)dx+∫(0,a)f(2a-x)dx=∫(0,a)f(x)dx+∫(a,2a)f(x)d...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式