函数在某个区间上具有单调性,那么什么意思?

 我来答
教育小百科达人
2022-12-29 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

y=sinx在[2kπ-π/2,2kπ+π/2],k∈Z,上是增函数。

在[2kπ+π/2,2kπ+3π/2],k∈Z,上是减函数。

y=cosx在[2kπ,2kπ+π],k∈Z,上是减函数。

在[2kπ+π,2kπ+2π],k∈Z,上是增函数。

当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。

如果说明一个函数在某个区间D上具有单调性,则我们将D称作函数的一个单调区间,则可判断出:

1、D⊆Q(Q是函数的定义域)。

2、区间D上,对于函数f(x),∀(任取值)x1,x2∈D且x1>x2,都有f(x1) >f(x2)。或,∀ x1,x2∈D且x1>x2,都有f(x1) <f(x2)。

3、函数图像一定是上升或下降的。

4、该函数在E⊆D上与D上具有相同的单调性。

扩展资料:

一般地,设一连续函数 f(x) 的定义域为D,则:

1、如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) >f(x2),即在D上具有单调性且单调增加,那么就说f(x) 在这个区间上是增函数。

2、相反地,如果对于属于定义域D内某个区间上的任意两个自变量的值x1,x2∈D且x1>x2,都有f(x1) <f(x2),即在D上具有单调性且单调减少,那么就说 f(x) 在这个区间上是减函数。

如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

参考资料来源:百度百科——单调性

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式