求根公式为:
ax²+bx+c=0,a≠0
x1=[-b-√(b²-4ac)]/(2a)
x2=[-b+√(b²-4ac)]/(2a)
韦达定理为:
x1+x2=-b/a
x1*x2=c/a
发展历史:
法国数隐戚学家弗朗索瓦·韦达在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。
韦达最早发现代数方程的根与系数之间有这种关系,档携键因此,人们把这行巧个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。