试根法因式分解步骤
试根法:
即猜根法,是用来试探性地求解一元三次方程的方法
一些比较复杂的因式分解也可以利用试根法来解决(试根法适用于整系数多项式的因式分解)
方法:
若有整系数多项式anx^n+……+a1x+a0
则记f(x)=anx^n+……+a1x+a0
分别列出最高次项系数an的约数和常数项a0的约数,把这些数分别相除,就能得到f(x)=0可能的根,代入f(x)检验,若f(a)=0,则最后多项式必含有因式(x-a),再用综合除法得到剩下的因式
如:4x^3-12x^2+6x+4
设f(x)=4x^3-12x^2+6x+4
最高次项系数的约数为±1、±2、±4
常数项的约数为±1、±2、±4
则可能的根为±1、±2、±4、±1/2、±1/4
检验得f(2)=0
综合除法:(4x^3-12x^2+6x+4)/(x-2)=4x^2-4x-2
若只分解到有理数则4x^3-12x^2+6x+4=(x-2)(4x^2-4x-2)
试根法原理:
整系数多项式anx^n+……+a1x+a0,若r/s是它的有理根(r,s互质),那么s整除an,r整除a0
试根法因式分解步骤:
f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)。试根法是用来试探性地求解一元三次方程的方法。一元三次方程是只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。
一元三次方程的标准形式是ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法为卡尔丹公式法。把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。