试根法因式分解步骤

 我来答
2Hyang
2022-10-10 · 超过26用户采纳过TA的回答
知道答主
回答量:138
采纳率:100%
帮助的人:2.6万
展开全部

试根法:

即猜根法,是用来试探性地求解一元三次方程的方法

一些比较复杂的因式分解也可以利用试根法来解决(试根法适用于整系数多项式的因式分解)

 



方法:

若有整系数多项式anx^n+……+a1x+a0

则记f(x)=anx^n+……+a1x+a0

分别列出最高次项系数an的约数和常数项a0的约数,把这些数分别相除,就能得到f(x)=0可能的根,代入f(x)检验,若f(a)=0,则最后多项式必含有因式(x-a),再用综合除法得到剩下的因式

如:4x^3-12x^2+6x+4

设f(x)=4x^3-12x^2+6x+4

最高次项系数的约数为±1、±2、±4

常数项的约数为±1、±2、±4

则可能的根为±1、±2、±4、±1/2、±1/4

检验得f(2)=0

综合除法:(4x^3-12x^2+6x+4)/(x-2)=4x^2-4x-2

若只分解到有理数则4x^3-12x^2+6x+4=(x-2)(4x^2-4x-2)


试根法原理:

整系数多项式anx^n+……+a1x+a0,若r/s是它的有理根(r,s互质),那么s整除an,r整除a0


试根法因式分解步骤:

f(x)=(x-x1)(x-x2)(x-x3)……(x-xn)。试根法是用来试探性地求解一元三次方程的方法。一元三次方程是只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。
一元三次方程的标准形式是ax3+bx2+cx+d=0(a,b,c,d为常数,x为未知数,且a≠0)。一元三次方程的公式解法为卡尔丹公式法。把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式