数域的性质

 我来答
柿子快乐长
2022-10-14 · 贡献了超过604个回答
知道答主
回答量:604
采纳率:0%
帮助的人:12.8万
展开全部

数域的性质:

任何数域都包含有理数域Q。即Q是最小的数域。

证明:F必有一个非零元素a。

由于F为数环,所以0 = a - a属于F;1 = a/a 属于F;0和1都属于F,那么2 = 1+1;3 = 2+1自然数N都属于F;-n = 0 - n 也属于F;故整数集合Z都属于F;那么a/b 也属于F(其中a,b为整数)。这样,任何一个数域都包含Q。

数域定义:设F是一个数环,如果对任意的a,b∈F而且a≠0, 则b/a∈F;则称F是一个数域。例如有理数集Q、实数集R、复数集C等都是数域。

著名的域还有:Klein四元域。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式