函数换元法如何理解
展开全部
换元法又称变量替换法 , 是我们解题常用的方法之一 。利用换元法 , 可以化繁为简, 化难为易 , 从而找到解题的捷径 。
换元法亦称辅助未知数法,又称变元代换法。解方程组的一种重要方法。它是普遍应用的一种方法,其一般意义是将由一个或几个变元构成的数学表达式中的一部分用新的变元表示,以利于问题的解决。
它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。
换元法是指引入一个或几个新的变量代替原来的某些变量的变量求出结果之后,返回去求原变量的结果.换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题。其理论根据是等量代换。
高中数学中换元法主要有以下两类:
(1)整体换元:以“元”换“式”。
(2)三角换元 ,以“式”换“元”。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |