已知一正五边形边长求外接圆的半径怎么求

 我来答
户如乐9318
2022-08-28 · TA获得超过6686个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:143万
展开全部
正五边形的每个内角是(5-2)×180°/5=108°
连接圆心和一条边的两端,得到一个等腰三角形,其底角为108°/2=54°,顶角为180°-2×54°=72°
设正五边形的边长为a,外接圆的半径为r,则r=a/(2cos54°)=a/(2sin36°)
下面给出sin36°的求法:
由于sin36°=sin(180°=36°)=sin144°=2sin72°cos72°
=4sin36°cos36°[2(cos36°)^2-1]
由此得到 8(cos36°)^3-4cos36°-1=0
(2cos36°+1)[4(cos36°)^2-2cos36°-1]=0
由4(cos36°)^2-2cos36°-1=0解出
cos36°=(1+√5)/4,
sin36°=√[1-(cos36°)^2]=√(10-2√5)/4.
所以r=a/(2sin36°)=a/[2√(10-2√5)/4]=2a/√(10-2√5)
=(√(50+10√5)a/10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式