离散型随机变量的特点
展开全部
散变量的特点是:变量按其数值表现是否连续,分为连续变量和离散变量。连续变量的数值是连接不断的,相邻两值之间可作无限分割。
1、基本知识:变量按其数值表现是否连续,分为连续变量和离散变量。离散变量指变量值可以按一定顺序一一列举,通常以整数位取值的变量。如职工人数、工厂数、机器台数等。有些性质上属于连续变量的现象也按整数取值,即可以把它们当做离散变量来看待。
2、离散变量的概率分布:常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。
3、二项分布:二项分布是基于贝努里(Bernoulli)试验的分布。贝努里试验是一种重要的概率模型。是历史上最早研究的概率论模型之一。有下面两个特点的试验称为贝努里试验。
4、泊松分布:若在大量的贝努里试验中,P(A)=p很小,则称这种概率模型为稀有事件概率模型。生三胞胎次数、患癌症人数、自然死亡人数、显微镜下微粒个数、放射粒子个数、大量产品中的次品数、摇奖中的一等奖等,都是稀有事件概率模型。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询