求微分方程sinydy+(cosy-e^x)dx=0的通解

 我来答
华源网络
2022-08-21 · TA获得超过5595个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
令P=cosy-e^x,Q=siny,因为aP/ay≠aQ/ax,所以设g=g(x)满足a(Pg)/ay=a(Qg)/ax即-gsiny=g'sinydg/g=-dx一个可行的g为g(x)=e^(-x)所以e^(-x)sinydy+(e^(-x)cosy-1)dx=0-e^(-x)d(cosy)-cosyd(e^(-x))=dxd(e^(-x)cosy)=-dx...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式