三角形三边关系有哪些?
在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。设三角形三边为a,b,c,则a+b>c,a>c-b;b+c>a,b>a-c;a+c>b,c>b-a。证明过程如下:
如图,任意△ABC,求证AB+AC>BC。
证明:在BA的延长线上取AD=AC
则∠D=∠ACD(等边对等角)
∵∠BCD>∠ACD
∴∠BCD>∠D
∴BD>BC(大角对大边)
∵BD=AB+AD=AB+AC
∴AB+AC>BC
特殊三角形的三边关系:
性质1:直角三角形两直角边的平方和等于斜边的平方。
性质2:在直角三角形中,两个锐角互余。
性质3:在直角三角形中,斜边上的中线等于斜边的一半。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
扩展资料
三角形的其他性质
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
*勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。