函数f(x)的间断点主要有哪两种?
第一类间断点:
设Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的 第一类间断点。
又如果(i),f(x-)=f(x+)≠f(x),或f(x)无意义,则称Xo为f(x)的 可去间断点。(ii),f(x-)≠f(x+),则称Xo为f(x)的 跳跃间断点。
第二类间断点:
函数的左右极限至少有一个不存在。a若函数在x=Xo处的左极限或右极限至少有一个为无穷大,则称x=Xo为f(x)的无穷间断点。例y=tanx,x=π/2。
b若函数在x=Xo处的左右极限都不存在且非无穷大,则称x=Xo为f(x)的振荡间断点。
例:y= sin(1/x),x=0。
扩展资料:
间断点的几种常见类型。
可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。
可去间断点和跳跃间断点称为第一类间断点,也叫有限型间断点。其它间断点称为第二类间断点。
由上述对各种间断点的描述可知,函数f(x)在第一类间断点的左右极限都存在,而函数f(x)在第二类间断点的左右极限至少有一个不存在,这也是第一类间断点和第二类间断点的本质上的区别。
参考资料来源:百度百科--间断点
参考资料来源:百度百科--第二类间断点