超详细MySQL数据库优化
数据库优化一方面是找出系统的瓶颈,提高MySQL数据库的整体性能,而另一方面需要合理的结构设计和参数调整,以提高用户的相应速度,同时还要尽可能的节约系统资源,以便让系统提供更大的负荷.
1. 优化一览图
2. 优化
笔者将优化分为了两大类,软优化和硬优化,软优化一般是操作数据库即可,而硬优化则是操作服务器硬件及参数设置.
2.1 软优化
2.1.1 查询语句优化
1.首先我们可以用EXPLAIN或DESCRIBE(简写:DESC)命令分析一条查询语句的执行信息.
2.例:
显示:
其中会显示索引和查询数据读取数据条数等信息.
2.1.2 优化子查询
在MySQL中,尽量使用JOIN来代替子查询.因为子查询需要嵌套查询,嵌套查询时会建立一张临时表,临时表的建立和删除都会有较大的系统开销,而连接查询不会创建临时表,因此效率比嵌套子查询高.
2.1.3 使用索引
索引是提高数据库查询速度最重要的方法之一,关于索引可以参高笔者<MySQL数据库索引>一文,介绍比较详细,此处记录使用索引的三大注意事项:
2.1.4 分解表
对于字段较多的表,如果某些字段使用频率较低,此时应当,将其分离出来从而形成新的表,
2.1.5 中间表
对于将大量连接查询的表可以创建中间表,从而减少在查询时造成的连接耗时.
2.1.6 增加冗余字段
类似于创建中间表,增加冗余也是为了减少连接查询.
2.1.7 分析表,,检查表,优化表
分析表主要是分析表中关键字的分布,检查表主要是检查表中是否存在错误,优化表主要是消除删除或更新造成的表空间浪费.
1. 分析表: 使用 ANALYZE 关键字,如ANALYZE TABLE user;
2. 检查表: 使用 CHECK关键字,如CHECK TABLE user [option]
option 只对MyISAM有效,共五个参数值:
3. 优化表:使用OPTIMIZE关键字,如OPTIMIZE [LOCAL|NO_WRITE_TO_BINLOG] TABLE user;
LOCAL|NO_WRITE_TO_BINLOG都是表示不写入日志.,优化表只对VARCHAR,BLOB和TEXT有效,通过OPTIMIZE TABLE语句可以消除文件碎片,在执行过程中会加上只读锁.
2.2 硬优化
2.2.1 硬件三件套
1.配置多核心和频率高的cpu,多核心可以执行多个线程.
2.配置大内存,提高内存,即可提高缓存区容量,因此能减少磁盘I/O时间,从而提高响应速度.
3.配置高速磁盘或合理分布磁盘:高速磁盘提高I/O,分布磁盘能提高并行操作的能力.
2.2.2 优化数据库参数
优化数据库参数可以提高资源利用率,从而提高MySQL服务器性能.MySQL服务的配置参数都在my.cnf或my.ini,下面列出性能影响较大的几个参数.
2.2.3 分库分表
因为数据库压力过大,首先一个问题就是高峰期系统性能可能会降低,因为数据库负载过高对性能会有影响。另外一个,压力过大把你的数据库给搞挂了怎么办?所以此时你必须得对系统做分库分表 + 读写分离,也就是把一个库拆分为多个库,部署在多个数据库服务上,这时作为主库承载写入请求。然后每个主库都挂载至少一个从库,由从库来承载读请求。
2.2.4 缓存集群
如果用户量越来越大,此时你可以不停的加机器,比如说系统层面不停加机器,就可以承载更高的并发请求。然后数据库层面如果写入并发越来越高,就扩容加数据库服务器,通过分库分表是可以支持扩容机器的,如果数据库层面的读并发越来越高,就扩容加更多的从库。但是这里有一个很大的问题:数据库其实本身不是用来承载高并发请求的,所以通常来说,数据库单机每秒承载的并发就在几千的数量级,而且数据库使用的机器都是比较高配置,比较昂贵的机器,成本很高。如果你就是简单的不停的加机器,其实是不对的。所以在高并发架构里通常都有缓存这个环节,缓存系统的设计就是为了承载高并发而生。所以单机承载的并发量都在每秒几万,甚至每秒数十万,对高并发的承载能力比数据库系统要高出一到两个数量级。所以你完全可以根据系统的业务特性,对那种写少读多的请求,引入缓存集群。具体来说,就是在写数据库的时候同时写一份数据到缓存集群里,然后用缓存集群来承载大部分的读请求。这样的话,通过缓存集群,就可以用更少的机器资源承载更高的并发。
一个完整而复杂的高并发系统架构中,一定会包含:各种复杂的自研基础架构系统。各种精妙的架构设计.因此一篇小文顶多具有抛砖引玉的效果,但是数据库优化的思想差不多就这些了.
2024-08-23 广告
一、数据库设计方面
合理设计表结构:
选择合适的数据类型,避免使用过大或不必要的数据类型。例如,对于整数类型,根据实际需求选择 tinyint、smallint、int 或 bigint 等。对于字符串类型,如果长度可以确定,尽量使用 char 类型而不是 varchar,因为 char 类型在存储和检索时效率更高。
规范化与反规范化的平衡。适度的规范化可以减少数据冗余,但过度规范化可能导致复杂的连接操作,降低查询性能。在某些情况下,可以适当进行反规范化,例如通过冗余存储一些常用的关联数据,减少连接操作。
建立合适的索引:
选择合适的列建立索引,通常是在经常用于查询条件、排序、分组的列上建立索引。例如,如果经常根据用户的 ID 进行查询,那么在用户表的 ID 列上建立索引可以大大提高查询速度。
避免过多的索引,因为每个索引都需要占用存储空间,并且在数据插入、更新和删除时会增加额外的开销。只在真正需要的列上建立索引,并且定期检查和优化索引的使用情况。
优化查询条件:
尽量避免在查询条件中使用函数或表达式,因为这会导致数据库无法使用索引。例如,不要使用 WHERE DATE(column_name) = '2024-10-15',而应该使用 WHERE column_name >= '2024-10-15 00:00:00' AND column_name <= '2024-10-15 23:59:59',这样数据库可以利用索引进行快速查询。
使用合适的比较运算符,例如在数值比较时使用 =、<、> 等,在字符串比较时使用 LIKE 要注意避免在开头使用通配符 %,因为这会导致全表扫描。
限制返回结果集:
使用 LIMIT 语句限制返回的行数,避免查询不必要的大量数据。如果只需要查看前几条记录,可以使用 LIMIT n;如果需要分页查询,可以使用 LIMIT offset, n,其中 offset 表示起始位置,n 表示返回的行数。
只选择需要的列,避免使用 SELECT *,这样可以减少数据传输量和查询时间。
调整缓存设置:
合理设置缓冲池大小,缓冲池用于缓存数据页和索引页,提高数据的读取速度。可以根据服务器的内存大小和数据库的负载情况进行调整。
调整查询缓存,查询缓存可以缓存查询结果,对于相同的查询可以直接返回缓存结果,提高查询性能。但是,如果表经常被更新,查询缓存可能会带来额外的开销,此时可以考虑关闭查询缓存。
优化存储引擎参数:
如果使用 InnoDB 存储引擎,可以调整 innodb_buffer_pool_size、innodb_flush_log_at_trx_commit 等参数,以提高数据库的性能和可靠性。
根据实际情况调整存储引擎的其他参数,如 MyISAM 存储引擎的 key_buffer_size 等。
增加内存:
足够的内存可以让数据库缓存更多的数据和索引,减少磁盘 I/O 操作,提高查询性能。可以根据数据库的负载情况和服务器的硬件配置,适当增加服务器的内存容量。
使用固态硬盘:
固态硬盘具有更快的读写速度,可以大大提高数据库的磁盘 I/O 性能。如果条件允许,可以将数据库存储在固态硬盘上。
优化服务器配置:
合理分配服务器的资源,避免其他应用程序占用过多的资源,影响数据库的性能。可以调整服务器的内核参数、网络参数等,以提高数据库的性能。
分析查询执行计划:
使用 EXPLAIN 语句分析查询的执行计划,了解数据库是如何执行查询的,找出潜在的性能问题。例如,可以查看是否使用了索引、是否进行了全表扫描等。
根据执行计划的分析结果,对查询进行优化,调整索引、查询条件等,以提高查询性能。
定期清理数据和优化表:
定期清理不再需要的数据,减少数据库的大小,提高查询性能。可以使用 DELETE 语句删除过期的数据,或者使用归档策略将历史数据转移到其他存储设备上。
定期使用 OPTIMIZE TABLE 语句优化表结构,消除表中的碎片,提高表的访问速度。
二、查询语句优化方面
三、数据库配置方面
四、服务器硬件和环境方面
五、定期维护方面
通过以上方法,可以有效地优化 MySQL 数据库的查询性能,提高数据库的响应速度和吞吐量。