空间中平面方程的一般形式为什么呢?
1个回答
展开全部
空间中平面方程的一般形式为:Ax+By+Cz=0。其中x、y、z的系数,A、B、C是平面的法向量的一组方向数,平行于x轴的平面方程的一般形式为:By+Cz+D=0。(0、B、C)是它的一个法向量。
因为X轴垂直于YOZ平面,则YOZ平面内的任何一条过原点的直线L,它的方向向量为(0,B,C),都有一个平面α与之垂直,而这个平面α就平行于X轴,(0、B、C)是α的一个法向量。
扩展资料:
平面方程截距式
设平面方程为Ax+By+Cz+D=0,若D不等于0,取a=-D/A,b=-D/B,c=-D/C,则得平面的截距式方程:x/a+y/b+z/c=1 。
它与三坐标轴的交点分别为P(a,0,0),Q(0,b,0),R(0,0,c),其中,a,b,c依次称为该平面在x,y,z轴上的截距。
参考资料来源:百度百科-平面方程
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询