高三年级必修二物理知识点

 我来答
科技王阿卓
2023-01-11 · TA获得超过280个赞
知道小有建树答主
回答量:873
采纳率:0%
帮助的人:81.5万
展开全部

1.高三年级必修二物理知识点


  1.超重现象

  定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。

  产生原因:物体具有竖直向上的加速度。

  2.失重现象

  定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。

  产生原因:物体具有竖直向下的加速度。

  3.完全失重现象

  定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。

  产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。

2.高三年级必修二物理知识点

  (1)极性分子之间

  极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。

  (2)极性分子与非极性分子之间

  非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。

  (3)非极性分子之间

  非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?

  我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。

3.高三年级必修二物理知识点


  1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.

  2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

  3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.

  路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.

  4.速度和速率

  (1)速度:描述物体运动快慢的物理量.是矢量.

  ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.

  ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.

  (2)速率:

  ①速率只有大小,没有方向,是标量.

  ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.

  5.运动图像

  (1)位移图像(s-t图像):

  ①图像上一点切线的斜率表示该时刻所对应速度;

  ②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;

  ③图像与横轴交叉,表示物体从参考点的一边运动到另一边.

  (2)速度图像(v-t图像):

  ①在速度图像中,可以读出物体在任何时刻的速度;

  ②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.

  ③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.

  ④图线与横轴交叉,表示物体运动的速度反向.

  ⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.

4.高三年级必修二物理知识点

  1.电路的组成:电源、开关、用电器、导线。

  2.电路的三种状态:通路、断路、短路。

  3.电流有分支的是并联,电流只有一条通路的是串联。

  4.在家庭电路中,用电器都是并联的。

  5.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反)。

  6.电流表不能直接与电源相连,电压表在不超出其测量范围的情况下可以。

  7.电压是形成电流的原因。

  8.安全电压应低于24V。

  9.金属导体的电阻随温度的升高而增大。

  10.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

  11.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

  12.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

  13.伏安法测电阻原理:R=伏安法测电功率原理:P=UI

  14.串联电路中:电压、电功和电功率与电阻成正比

  15.并联电路中:电流、电功和电功率与电阻成反比

  16."220V100W"的灯泡比"220V40W"的灯泡电阻小,灯丝粗。

5.高三年级必修二物理知识点


  1.电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

  (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。

  (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

  2.磁通量

  定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb

  求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。

  3.楞次定律

  (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

  (2)对楞次定律的理解

  ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

  ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

  ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。

  ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

  (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:

  ①阻碍原磁通量的变化;

  ②阻碍物体间的相对运动;

  ③阻碍原电流的变化(自感)。

  4.法拉第电磁感应定律

  电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt

  当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。

  (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

  (2)公式的变形

  ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。

  ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。

  5.自感现象

  (1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

  (2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式