什么是异质性检验?
异质性检验的目的是检查各个独立研究的结果是否具有可合并性。
一、异质性(heterogeneity)
异质性其实也就是我们经常所谓的差异、差别。它可以是个体层面上,也可以是群体层面上。前者属于个体异质性,后者属于总体异质性。异质性无处不在,这也是社会科学研究的真正本质。
二、检验与异质性
定量的社会科学研究所做的也就是在于理解或认识异质性的主要来源,为此很重要的方式之一就是做社会分组。所以我们总是在研究中运用从最简单的t检验、方差分析到更为复杂点的多元回归分析等统计分析方法来帮助我们做得更合理、更科学。
三、异质性分析
1、最简单的处理就是纳入虚拟变量。比如,在工资收入的Mincer方程中纳入性别虚拟变量female(0=男性,1=女性):Yi= β0+ β1expi + β2edui+ β3femalei + εi(其中i表示个体,exp为工龄,edu为受教育年限。)
2、上述方程对应着两个方程:对于男性,Yi =β0 + β1expi +β2edui + εi,对于女性,Yi =(β0 + β3) + β1expi + β2edui+ εi。表明工龄和受教育年限的收入对男性和女性是一样的,但两者在收入平均水平上具有异质性。
2024-01-29 广告
2024-01-02 · 百度认证:SPSSAU官方账号,优质教育领域创作者
什么是异质性?
广义:描述参与者、干预措施和一系列研究间测量结果的差异和多样性,或那些研究中内在真实性的变异。
狭义:统计学异质性,用来描述一系列研究中效应量的变异程度,也用于表明除仅可预见的偶然机会外研究间存在的差异
可以使用异质性检验进行异质性分析,结论更加客观,其中包括:Q检验,I2值判断,H值判断等。通常情况下Q检验时p 值>0.1,即说明无异质性(即同质性);I2指标衡量组间异质性的占比情况,通常I2大于50%时认为异质性较高,I2大于75%时认为异质性过高;通常H值大于1.5则说明存在异质性,H值小于1.2说明不存在异质性问题,如果H介于1.2 ~ 1.5之间时,如果95%区间包括1说明没有异质性,反之说明具有异质性。
(2)可视化图形
也可以用图形进行分析,比如森林图、Galbraith 图法、L’Abbe 图等。比如森林图举例如下:
森林图左侧为研究Study名称及异质性检验和合并效应统计检验等信息;森林图中间部分展示效应量及置信区间,方块矩形为权重大小其表示该Study的贡献情况,中间虚线为参照对比线其对应着合并效应值,菱形表示合并效应量结果;森林图右侧展示效应及其置信区间具体数据,并且展示各Study权重信息等;如果有亚组Subgroup,则会展示各亚组效应量及检验信息等。。
异质性检验是用来检验不同样本之间是否存在显著差异的统计方法。在统计学中,异质性指的是不同样本之间的方差不相等。异质性检验可以帮助我们确定是否需要采取不同的统计方法来处理不同样本之间的数据,以确保结果的准确性和可靠性。常见的异质性检验包括Levene检验、Bartlett检验和Brown-Forsythe检验等。