(x-3)X3=90解方程?
展开全部
将方程进行化简:
(x-3)x3 = 90
将等式右侧的90化为因数形式,同时将左侧的x-3展开:
(x-3)(x^2 - 3x + 9) = 2 x 3 x 3 x 5
由于等式右侧是一个合数,可以考虑将其拆分成两个大致相等的因数:2 x 3 x 3 和 3 x 5。即:
(x-3)(x^2 - 3x + 9) = 2 x 3 x 3
或者
(x-3)(x^2 - 3x + 9) = 3 x 5 x 2
然后,我们可以分别解出这两个方程:
1. (x-3)(x^2 - 3x + 9) = 2 x 3 x 3
其中2、3、3都是质数,所以等式右侧不能再分解成更小的质因数了。因此,可以试图将等式左侧中的两个因式,分别与右侧的因子配对,得到如下的可能解:
x - 3 = 2, x^2 - 3x + 9 = 3 x 3
或者
x - 3 = 3 x 3, x^2 - 3x + 9 = 2
计算可得,第一个方程的实根为 x = 5,但是代入第二个方程的左侧,发现等式不成立。因此,第一个方程的解不符合题意,应该舍去。
接下来考虑第二个方程:
x - 3 = 3 x 3, x^2 - 3x + 9 = 2
则有:
x = 3 x 3 + 3 = 12
或者
x = 3 x 3 - 3 = 6
这两个解都需要代入原方程进行检验。将 x = 12 代入原方程得到:
(x-3)x3 = 90
(12-3) x 3 = 81 ≠ 90
因此,x = 12 不是原方程的解。将 x = 6 代入原方程可以发现等式成立,因此方程的实根为 x = 6。
因此,方程的解为 x = 6。
(x-3)x3 = 90
将等式右侧的90化为因数形式,同时将左侧的x-3展开:
(x-3)(x^2 - 3x + 9) = 2 x 3 x 3 x 5
由于等式右侧是一个合数,可以考虑将其拆分成两个大致相等的因数:2 x 3 x 3 和 3 x 5。即:
(x-3)(x^2 - 3x + 9) = 2 x 3 x 3
或者
(x-3)(x^2 - 3x + 9) = 3 x 5 x 2
然后,我们可以分别解出这两个方程:
1. (x-3)(x^2 - 3x + 9) = 2 x 3 x 3
其中2、3、3都是质数,所以等式右侧不能再分解成更小的质因数了。因此,可以试图将等式左侧中的两个因式,分别与右侧的因子配对,得到如下的可能解:
x - 3 = 2, x^2 - 3x + 9 = 3 x 3
或者
x - 3 = 3 x 3, x^2 - 3x + 9 = 2
计算可得,第一个方程的实根为 x = 5,但是代入第二个方程的左侧,发现等式不成立。因此,第一个方程的解不符合题意,应该舍去。
接下来考虑第二个方程:
x - 3 = 3 x 3, x^2 - 3x + 9 = 2
则有:
x = 3 x 3 + 3 = 12
或者
x = 3 x 3 - 3 = 6
这两个解都需要代入原方程进行检验。将 x = 12 代入原方程得到:
(x-3)x3 = 90
(12-3) x 3 = 81 ≠ 90
因此,x = 12 不是原方程的解。将 x = 6 代入原方程可以发现等式成立,因此方程的实根为 x = 6。
因此,方程的解为 x = 6。
展开全部
首先可以将方程中的乘法展开:
(x-3) × 3 = 90
化简可得:
3x - 9 = 90
移项解方程:
3x = 99
x = 33
因此,方程的解为 x = 33。
(x-3) × 3 = 90
化简可得:
3x - 9 = 90
移项解方程:
3x = 99
x = 33
因此,方程的解为 x = 33。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
x-3=90÷3
×-3=30
×=33
x-3=90÷3
×-3=30
×=33
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询