一道数学题,麻烦大家帮下。
2个回答
展开全部
证明:设y=f(x)=ax^2+x-a,a=(y-x)/(x^2-1)
(1)当x=1时,y=1;当x=-1时,y=-1。此时|y|=1<5/4成立;
(2)当-1<x<1时,x^2-1<0,y=a(x^2-1)+x,当a>0时,y<x<=1;
当a<0时,y>x,此时|a|=|(y-x)/(x^2-1)|=|y-x|/(1-x^2)<1
简化为:y<1+x-x^2=5/4-(x-0.5)^2
因-1<=x<=1,故-1.5<(x-0.5)<0.5
故-9/4<=-(x-0.5)^2<=0
-1<=5/4-(x-0.5)^2<=5/4
-1<y<5/4
综上所述,-1<=y<5/4
即-1<=f(x)<5/4
(1)当x=1时,y=1;当x=-1时,y=-1。此时|y|=1<5/4成立;
(2)当-1<x<1时,x^2-1<0,y=a(x^2-1)+x,当a>0时,y<x<=1;
当a<0时,y>x,此时|a|=|(y-x)/(x^2-1)|=|y-x|/(1-x^2)<1
简化为:y<1+x-x^2=5/4-(x-0.5)^2
因-1<=x<=1,故-1.5<(x-0.5)<0.5
故-9/4<=-(x-0.5)^2<=0
-1<=5/4-(x-0.5)^2<=5/4
-1<y<5/4
综上所述,-1<=y<5/4
即-1<=f(x)<5/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询