如何用图像表达函数f(x)=√(1/ x)?
1个回答
展开全部
图像如下:
f(x)=√(1-x^2),定义域为1-x^2≥0,即-1≤x≤1
令y=√(1-x^2),则y≥0
且,y^2=1-x^2
===> x^2+y^2=1
它表示的是以原点为圆心,半径为1的圆【即单位圆】
圆的性质
1、圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
2、有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询