证明:|sin(x+2)-sinx|≤1/2?
可以使用三角函数的和差公式来证明该不等式。
首先,根据三角函数的和差公式:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
将 a = x,b = 2 代入,得到:
sin(x + 2) = sin(x)cos(2) + cos(x)sin(2)
同理,将 b = 0 代入,得到:
sin(x) = sin(x)cos(0) + cos(x)sin(0)
接着,将这两个式子相减,并应用三角函数的差角公式 sin(a - b) = sin(a)cos(b) - cos(a)sin(b),得到:
sin(x + 2) - sin(x) = sin(x)cos(2) + cos(x)sin(2) - sin(x)cos(0) - cos(x)sin(0)
= sin(x)(cos(2) - cos(0)) + cos(x)(sin(2) - sin(0))
= 2sin(x + 1)sin(1)
接下来,根据三角函数的绝对值不等式 |sin(a)| ≤ 1,可以得到:
|sin(x + 2) - sin(x)| = |2sin(x + 1)sin(1)| ≤ 2sin(1)
因为 0 ≤ sin(1) ≤ 1,所以 0 ≤ 2sin(1) ≤ 2,即:
|sin(x + 2) - sin(x)| ≤ 2sin(1) ≤ 1/2
因此,可以得到:|sin(x + 2) - sin(x)| ≤ 1/2