一道初三数学的几何证明题,圆的

PA、PB分别为相交两圆⊙O1和⊙O2的切线,且PA=PB。PD、PF分别交⊙O1和⊙O2于C、D、E、F.求证:∠CDE=∠EFC... PA、PB分别为相交两圆⊙O1和⊙O2的切线,且PA=PB。PD、PF分别交⊙O1和⊙O2于C、D、E、F.求证:∠CDE=∠EFC 展开
看7de50
高赞答主

2010-05-24 · 觉得我说的对那就多多点赞
知道顶级答主
回答量:4.6万
采纳率:51%
帮助的人:4.9亿
展开全部
证明:
∵PA,PB是切线
∴PA²=PC*PD,PB²=PE*PF
∵PA=PB
∴PC*PD=PE*PF
∴PC/PE=PF/PD
∵∠DPE=∠FPC
∴△PDE∽△PFC
∴∠CDE=∠EFC
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式