e^ iπ+1=0吗?

 我来答
轮看殊O
高粉答主

2023-07-09 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:761万
展开全部

e^iπ+1=0.这个恒等式也叫做欧拉公式,

它是数学里欧拉公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率.

π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。

利用上面的e^±ix=cosx±isinx。 那么这里的π就是x,那么:

e^iπ=cosπ+isinπ

=-1

那么e^iπ+1=0

扩展资料

在数论中,欧拉定理(Euler Theorem,也称费马-欧拉定理或欧拉函数定理)是一个关于同余的性质。

将1~n中与n互质的数按顺序排布:x1,x2……xφ(n) (显然,共有φ(n)个数)

我们考虑这么一些数:

m1=a*x1;m2=a*x2;m3=a*x3……mφ(n)=a*xφ(n)

1)这些数中的任意两个都不模n同余,因为如果有mS≡mR (mod n) (这里假定mS更大一些),就有:

mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a与n的最大公因子是1,而xS-xR<n,因而左式不可能被n整除。也就是说这些数中的任意两个都不模n同余,φ(n)个数有φ(n)种余数。

2)这些数除n的余数都与n互质,因为如果余数与n有公因子r,那么a*xi=pn+qr=r(……),a*xi与n不互质,而这是不可能的。(因为a*xi=pn+qr=r(……),说明a*xi含有因子r,又因为前面假设n含有因子r,所以a*xi和n含有公因子r,因此a*xi与n不互质)那么这些数除n的余数,都在x1,x2,x3……xφ(n)中,因为这是1~n中与n互质的所有数,而余数又小于n.

由1)和2)可知,数m1,m2,m3……mφ(n)(如果将其次序重新排列)必须相应地同余于x1,x2,x3……xφ(n).

故得出:m1*m2*m3……mφ(n)≡x1*x2*x3……xφ(n) (mod n)

或者说a^[φ(n)]*(x1*x2*x3……xφ(n))≡x1*x2*x3……xφ(n)

或者为了方便:K{a^[φ(n)]-1}≡0 ( mod n ) 这里K=x1*x2*x3……xφ(n)。

可知K{a^[φ(n)]-1}被n整除。但K中的因子x1,x2……都与n互质,所以K与n互质。那么a^[φ(n)]-1必须能被n整除,即a^[φ(n)]-1≡0 (mod n),即a^[φ(n)]≡1 (mod n),得证。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式