球面的参数方程怎么写?
1个回答
展开全部
被球面紧贴包围的立体称为球体,简称球。在空间直角坐标系中,以坐标原点为球心,半径为R的球面的方程为x^2+y^2+z^2=R^2,它的参数方程为
(0≤θ≤2π,0≤φ≤π)
在解析几何,球是中心在(x0,y0,z0),半径是r的所有点(x, y, z)的集合:
(x-x0)2+(y-y0)2+(z-z0)2=r2
使用极座标来表示半径为r的球面:
x=x0+r sinθcosφ
y=y0+r sinθsinφ
z=z0+r cosθ
(θ的取值范围:0≤θ≤ n 和 -∏<φ≤∏)
圆的参数方程:
参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果。例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询