4个回答
展开全部
鸡兔同笼:这个问题,是我国古代著名趣题之一。
大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
假设法: 解: 假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4—2=2(条) 24÷2=12 (只) ------ 兔 35-12=23(只) ------鸡
方程: 解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23 答:兔有12只,鸡有23只。
我国古代《孙子算经》共三卷,成书大约在公元5世纪。这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题: 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。 现在,松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。
我们来总结一下这道题的解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只。
1.班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生? 解:设男生有X人 女生有(50-X人)。 3x=120-5-2(50-x) 3x=115-2乘50+2x 3x=115-100+2x 3x=15+2x x=15 50-15=35(人) 答:男生有15人,女生有35人。 2.大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个? 1/2=0.5(千克)4×60=240(千克)240-100=140(千克)140/(4-0.5)=40(个)60-40=20(个) 答:大瓶20个,小瓶40个。 3.小毛参加数学竞赛,共做20道题,得67分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题? 这道题可以设小毛做对X道,那么做错(20-X)÷2,没做(20-X)÷2,然后用做对的乘5减去做错的乘1,等于67。 方程: 5X-(20-X)÷2×1=67 X=14 小毛做对14道 4.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只? 解:方程假设蜘蛛为x,蜻蜓为y,蝉为Z 那么 x+y+z=18 8x+6y+6z=118 2y+z=20 由此算出 x=5 y=7 z=6 所以 蜘蛛是5只 蜻蜓是7只 蝉是6只
大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
假设法: 解: 假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4—2=2(条) 24÷2=12 (只) ------ 兔 35-12=23(只) ------鸡
方程: 解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23 答:兔有12只,鸡有23只。
我国古代《孙子算经》共三卷,成书大约在公元5世纪。这本书浅显易懂,有许多有趣的算术题,比如“鸡兔同笼”问题: 今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
题目中给出了鸡兔共有35只,如果把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚的鸡。鸡兔总的脚数是35×2=70(只),比题中所说的94只要少94-70=24(只)。 现在,松开一只兔子脚上的绳子,总的脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上的绳子,总的脚数又增加2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只)。
我们来总结一下这道题的解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只。
1.班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生? 解:设男生有X人 女生有(50-X人)。 3x=120-5-2(50-x) 3x=115-2乘50+2x 3x=115-100+2x 3x=15+2x x=15 50-15=35(人) 答:男生有15人,女生有35人。 2.大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大小油瓶各多少个? 1/2=0.5(千克)4×60=240(千克)240-100=140(千克)140/(4-0.5)=40(个)60-40=20(个) 答:大瓶20个,小瓶40个。 3.小毛参加数学竞赛,共做20道题,得67分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的同样多。问小毛做对几道题? 这道题可以设小毛做对X道,那么做错(20-X)÷2,没做(20-X)÷2,然后用做对的乘5减去做错的乘1,等于67。 方程: 5X-(20-X)÷2×1=67 X=14 小毛做对14道 4.有蜘蛛,蜻蜓,蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只? 解:方程假设蜘蛛为x,蜻蜓为y,蝉为Z 那么 x+y+z=18 8x+6y+6z=118 2y+z=20 由此算出 x=5 y=7 z=6 所以 蜘蛛是5只 蜻蜓是7只 蝉是6只
展开全部
(1)三个连续自然数的最小公倍数是336。这三个自然数分别是多少?
336=2×2×2×2×3×7
由于:任意两个连续自然数的最小公倍数就是这个数的积。任意三个连续自然数的最小公倍数就是这三个自然数的积,所以这三个自然数的积是336,且这三个自然数都小于10,
从336=2×2×2×2×3×7 中,要得到三个连续的自然数,利用乘法结合律,进行组合,并且使积要小于10,那么有:
2×2×2=8
2×3=6
所以是6 7 8
336=2×2×2×2×3×7
由于:任意两个连续自然数的最小公倍数就是这个数的积。任意三个连续自然数的最小公倍数就是这三个自然数的积,所以这三个自然数的积是336,且这三个自然数都小于10,
从336=2×2×2×2×3×7 中,要得到三个连续的自然数,利用乘法结合律,进行组合,并且使积要小于10,那么有:
2×2×2=8
2×3=6
所以是6 7 8
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
X的平方+2X+Y的平方-6Y+10=0求X Y
答案:
把10拆成1+9
所以(X²+2X+1)+(Y²-6Y+9)=0
(X+1)²+(Y-3)²=0
平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立。
所以两个都等于0
所以X+1=0,Y-3=0
X=-1,Y=3
答案:
把10拆成1+9
所以(X²+2X+1)+(Y²-6Y+9)=0
(X+1)²+(Y-3)²=0
平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立。
所以两个都等于0
所以X+1=0,Y-3=0
X=-1,Y=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |