微分方程xy'-y-根号(y^2-x^2)=0的通解是
1个回答
展开全部
这么齐…显然想到令y/x=u,
y'=u+(du/dx)*x
y'-u-sqrt(u^2-1)=0
带入即有:
==>u+(du/dx)*x=u+sqrt(u^2-1)
分离变量:
==>du/[sqrt(u^2-1)]=dx/x
然后两边求原函数就是了,都是常见的形式了。
ln |[u+sqrt(u^2-1)]|=ln |x|
带回u就是了。
不过中间除的几个地方,分母不为零问题自己还要注意下。
手机浏览器写的啊!好辛苦…
y'=u+(du/dx)*x
y'-u-sqrt(u^2-1)=0
带入即有:
==>u+(du/dx)*x=u+sqrt(u^2-1)
分离变量:
==>du/[sqrt(u^2-1)]=dx/x
然后两边求原函数就是了,都是常见的形式了。
ln |[u+sqrt(u^2-1)]|=ln |x|
带回u就是了。
不过中间除的几个地方,分母不为零问题自己还要注意下。
手机浏览器写的啊!好辛苦…
参考资料: 如果您的回答是从其他地方引用,请表明出处
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询