三角形ABC中,有(a2-b2)SnC/c2Sin(-B)=
1个回答
展开全部
(a^2-b^2)SinC/c^2*Sin(A-B)=1
证明:
(a^2-b^2)/c^2
= [(a+b)/c][(a-b)/c]
根据正弦定理:
[(a+b)/c][(a-b)/c]
=[(sinA+sinB)/sinC][(sinA-sinB)/sinC]
分别处理,用和差化积公式:
(sinA+sinB)/sinC
=2sin[(A+B)/2]cos[(A-B)/2]/sin(A+B)
=2sin[(A+B)/2]cos[(A-B)/2]/2sin[(A+B)/2]cos[(A+B)/2]
=cos[(A-B)/2]/cos[(A+B)/2]
同理:
[(sinA-sinB)/sinC]
=sin[(A-B)/2]/sin[(A+B)/2]
所以[(a+b)/c][(a-b)/c]
=[(sinA+sinB)/sinC][(sinA-sinB)/sinC]
=sin[(A-B)/2]cos[(A-B)/2]/sin[(A+B)/2]cos[(A+B)/2]
=sin(A-B)/sin(A+B)=sin(A-B)/sinC
所以
=(a^2-b^2)SinC/c^2*Sin(A-B)
=[(a+b)/c][(a-b)/c][SinC/Sin(A-B)]
=[sin(A-B)/sinC][SinC/Sin(A-B)]
=1
证明:
(a^2-b^2)/c^2
= [(a+b)/c][(a-b)/c]
根据正弦定理:
[(a+b)/c][(a-b)/c]
=[(sinA+sinB)/sinC][(sinA-sinB)/sinC]
分别处理,用和差化积公式:
(sinA+sinB)/sinC
=2sin[(A+B)/2]cos[(A-B)/2]/sin(A+B)
=2sin[(A+B)/2]cos[(A-B)/2]/2sin[(A+B)/2]cos[(A+B)/2]
=cos[(A-B)/2]/cos[(A+B)/2]
同理:
[(sinA-sinB)/sinC]
=sin[(A-B)/2]/sin[(A+B)/2]
所以[(a+b)/c][(a-b)/c]
=[(sinA+sinB)/sinC][(sinA-sinB)/sinC]
=sin[(A-B)/2]cos[(A-B)/2]/sin[(A+B)/2]cos[(A+B)/2]
=sin(A-B)/sin(A+B)=sin(A-B)/sinC
所以
=(a^2-b^2)SinC/c^2*Sin(A-B)
=[(a+b)/c][(a-b)/c][SinC/Sin(A-B)]
=[sin(A-B)/sinC][SinC/Sin(A-B)]
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询