BP神经网络的训练集需要大样本吗?一般样本个数为多少?

BP神经网络的训练集需要大样本吗?一般样本个数为多少?那如果我的训练集样本为69个,算是属于大样本数据集吗?对于建立BP神经网络够用吗?... BP神经网络的训练集需要大样本吗?一般样本个数为多少?
那如果我的训练集样本为69个,算是属于大样本数据集吗?对于建立BP神经网络够用吗?
展开
 我来答
茫茫人海一亮星

2021-04-07 · TA获得超过4.4万个赞
知道大有可为答主
回答量:4.1万
采纳率:82%
帮助的人:1427万
展开全部
BP神经网络的训练集需要大样本吗?一般样本个数为多少?
BP神经网络样本数有什么影响
学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指的网络的迭代次数,如果有a个样本,每个样本训练次数n,则网络一共迭代an次,在n>>a 情况下 , 网络在不停的调整权值,减小误差,跟样本数似乎关系不大。而且,a大了的话训练时间必然会变长。
换一种说法,将你的数据集看成一个固定值, 那么样本集与测试集 也可以按照某种规格确定下来如7:3 所以如何看待 样本集的多少与训练结果呢? 或者说怎么使你的网络更加稳定,更加符合你的所需 。

我尝试从之前的一个例子中看下区别

如何用70行Java代码实现深度神经网络算法

作者其实是实现了一个BP神经网络 ,不多说,看最后的例子

一个运用神经网络的例子
最后我们找个简单例子来看看神经网络神奇的效果。为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。


图片描述

我们可以运用逻辑回归算法来解决上面的分类问题,但是逻辑回归得到一个线性的直线做为分界线,可以看到上面的红线无论怎么摆放,总是有一个样本被错误地划分到不同类型中,所以对于上面的数据,仅仅一条直线不能很正确地划分他们的分类,如果我们运用神经网络算法,可以得到下图的分类效果,相当于多条直线求并集来划分空间,这样准确性更高。

图片描述

简单粗暴,用作者的代码运行后 训练5000次 。根据训练结果来预测一条新数据的分类(3,1)



预测值 (3,1)的结果跟(1,2)(2,1)属于一类 属于正方形

这时如果我们去掉 2个样本,则样本输入变成如下

//设置样本数据,对应上面的4个二维坐标数据
double[][] data = new double[][]{{1,2},{2,2}};
//设置目标数据,对应4个坐标数据的分类
double[][] target = new double[][]{{1,0},{0,1}};
1
2
3
4
1
2
3
4




则(3,1)结果变成了三角形,

如果你选前两个点 你会发现直接一条中间线就可以区分 这时候的你的结果跟之前4个点时有区别 so 你得增加样本 直到这些样本按照你所想要的方式分类 ,所以样本的多少 重要性体现在,样本得能反映所有的特征值(也就是输入值) ,样本多少或者特征(本例子指点的位置特征)决定的你的网络的训练结果,!!!这是 我们反推出来的结果 。这里距离深度学习好像近了一步。

另外,这个70行代码的神经网络没有保存你训练的网络 ,所以你每次运行都是重新训练的网络。其实,在你训练过后 权值已经确定了下来,我们确定网络也就是根据权值,so只要把训练后的权值保存下来,将需要分类的数据按照这种权值带入网络,即可得到输出值,也就是一旦网络确定, 权值也就确定,一个输入对应一个固定的输出,不会再次改变!个人见解。

最后附上作者的源码,作者的文章见开头链接
下面的实现程序BpDeep.java可以直接拿去使用,

import java.util.Random;
public class BpDeep{
public double[][] layer;//神经网络各层节点
public double[][] layerErr;//神经网络各节点误差
public double[][][] layer_weight;//各层节点权重
public double[][][] layer_weight_delta;//各层节点权重动量
public double mobp;//动量系数
public double rate;//学习系数

public BpDeep(int[] layernum, double rate, double mobp){
this.mobp = mobp;
this.rate = rate;
layer = new double[layernum.length][];
layerErr = new double[layernum.length][];
layer_weight = new double[layernum.length][][];
layer_weight_delta = new double[layernum.length][][];
Random random = new Random();
for(int l=0;l<layernum.length;l++){
layer[l]=new double[layernum[l]];
layerErr[l]=new double[layernum[l]];
if(l+1<layernum.length){
layer_weight[l]=new double[layernum[l]+1][layernum[l+1]];
layer_weight_delta[l]=new double[layernum[l]+1][layernum[l+1]];
for(int j=0;j<layernum[l]+1;j++)
for(int i=0;i<layernum[l+1];i++)
layer_weight[l][j][i]=random.nextDouble();//随机初始化权重
}
}
}
//逐层向前计算输出
public double[] computeOut(double[] in){
for(int l=1;l<layer.length;l++){
for(int j=0;j<layer[l].length;j++){
double z=layer_weight[l-1][layer[l-1].length][j];
for(int i=0;i<layer[l-1].length;i++){
layer[l-1][i]=l==1?in[i]:layer[l-1][i];
z+=layer_weight[l-1][i][j]*layer[l-1][i];
}
layer[l][j]=1/(1+Math.exp(-z));
}
}
return layer[layer.length-1];
}
//逐层反向计算误差并修改权重
public void updateWeight(double[] tar){
int l=layer.length-1;
for(int j=0;j<layerErr[l].length;j++)
layerErr[l][j]=layer[l][j]*(1-layer[l][j])*(tar[j]-layer[l][j]);

while(l-->0){
for(int j=0;j<layerErr[l].length;j++){
double z = 0.0;
for(int i=0;i<layerErr[l+1].length;i++){
z=z+l>0?layerErr[l+1][i]*layer_weight[l][j][i]:0;
layer_weight_delta[l][j][i]= mobp*layer_weight_delta[l][j][i]+rate*layerErr[l+1][i]*layer[l][j];//隐含层动量调整
layer_weight[l][j][i]+=layer_weight_delta[l][j][i];//隐含层权重调整
if(j==layerErr[l].length-1){
layer_weight_delta[l][j+1][i]= mobp*layer_weight_delta[l][j+1][i]+rate*layerErr[l+1][i];//截距动量调整
layer_weight[l][j+1][i]+=layer_weight_delta[l][j+1][i];//截距权重调整
}
}
layerErr[l][j]=z*layer[l][j]*(1-layer[l][j]);//记录误差
}
}
}

public void train(double[] in, double[] tar){
double[] out = computeOut(in);
updateWeight(tar);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
下面是这个测试程序BpDeepTest.java的源码:

import java.util.Arrays;
public class BpDeepTest{
public static void main(String[] args){
//初始化神经网络的基本配置
//第一个参数是一个整型数组,表示神经网络的层数和每层节点数,比如{3,10,10,10,10,2}表示输入层是3个节点,输出层是2个节点,中间有4层隐含层,每层10个节点
//第二个参数是学习步长,第三个参数是动量系数
BpDeep bp = new BpDeep(new int[]{2,10,2}, 0.15, 0.8);

//设置样本数据,对应上面的4个二维坐标数据
double[][] data = new double[][]{{1,2},{2,2},{1,1},{2,1}};
//设置目标数据,对应4个坐标数据的分类
double[][] target = new double[][]{{1,0},{0,1},{0,1},{1,0}};

//迭代训练5000次
for(int n=0;n<5000;n++)
for(int i=0;i<data.length;i++)
bp.train(data[i], target[i]);

//根据训练结果来检验样本数据
for(int j=0;j<data.length;j++){
double[] result = bp.computeOut(data[j]);
System.out.println(Arrays.toString(data[j])+":"+Arrays.toString(result));
}

//根据训练结果来预测一条新数据的分类
double[] x = new double[]{3,1};
double[] result = bp.computeOut(x);
System.out.println(Arrays.toString(x)+":"+Arrays.toString(result));
}
}
百度网友deb127a4e
2010-06-01 · TA获得超过493个赞
知道答主
回答量:18
采纳率:0%
帮助的人:27.5万
展开全部
这要看做什么用了

只要训练样本的规律性很好的话那自然越多越好,如果不能满足一致规律的话多了反而有害,就比如拿着文革时候的数据最好解决文革时的问题,但不能用来解决2010年世博会问题一样。

还有就像楼上说的需要保留一些样本作为测试用,BP网络的话如果是分类问题可以保留10%左右吧,如果是预测问题的话5%应该就足够了,因为BP的预测能力的确有点弱,只适合预测离训练样本比较近的数据,这也是我自己的理解,呵呵。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友e56ba1038
推荐于2018-02-05 · TA获得超过2499个赞
知道小有建树答主
回答量:821
采纳率:0%
帮助的人:0
展开全部
这个没有明确要求,样本也不是越多越好。

通常情况下,你的样本可以一部分用来做验证。

加速你有100个样本,90%用来做训练,10%用来做验证等,当然,有时候还得留下10%做测试用。

我个人的经验是,样本数尽量在10以上吧。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
千千飞海
2018-02-05
知道答主
回答量:64
采纳率:100%
帮助的人:16万
展开全部
69个…… 的确够少。 不知道你每个样本的特征数是多少? 如果就几个特征值的话用很小的神经网络可以试试, 但我觉得你可以尝试下其余的机器学习算法。 神经网络只有当数据量大的时候优势才会显现,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式