matlab中怎样实现多层小波重构?

用db小波把信号分五层,怎样重构其中两层?麻烦高人指点... 用db小波把信号分五层,怎样重构其中两层?麻烦高人指点 展开
 我来答
508500
推荐于2017-11-23 · TA获得超过918个赞
知道小有建树答主
回答量:128
采纳率:0%
帮助的人:150万
展开全部
T=wpdec(y,5,'db40');
%对信号y进行小波包分解,层数为5,得到的T为小波树,plot一下就可看到
a10=wprcoef(T,[1,0]);
%a10是对节点[1,0]进行重构后得到的信号。貌似没有对那一层重构这一说法吧,只能是对某层的某个节点进行重构。节点的编号你可以从小波树中看出来

这是我的做法,不过用的是小波包分解。不知对你有没有用
东莞大凡
2024-08-07 广告
OpenCV标定板是东莞市大凡光学科技有限公司在相机标定中常用的工具。它通常由黑白格点按一定规则排列在平面上组成,如棋盘格或圆形格等。在相机标定时,将标定板置于不同位置和姿态下拍摄图像,利用OpenCV库中的函数检测标定板上的角点或圆心,进... 点击进入详情页
本回答由东莞大凡提供
Zz_Viking
2010-06-02 · 超过24用户采纳过TA的回答
知道答主
回答量:86
采纳率:0%
帮助的人:67.7万
展开全部
最简单你可以用小波工具箱啊,很容易

matlab--Start--toolboxes--wavelet
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
nuaazm
2012-03-08
知道答主
回答量:64
采纳率:0%
帮助的人:24.3万
展开全部
对最满意答案添加一下:可以重构任一节点的信号,也就是相当于选定任一频段的信号进行重构,一般都是选择自己关心的频段,在故障诊断中运用的比较多,把所有节点的信号重构后可以方便地看出问题的所在
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我是舞一
2015-11-08 · TA获得超过1685个赞
知道答主
回答量:663
采纳率:93%
帮助的人:91.4万
展开全部
(1)程序所用的小波函数只有非标准的Haar小波,其滤波器组为 Lo_D=[1/2 1/2], Hi_D=[-1/2 1/2],是固化在 mydwt2.m 的程序中的,不能选择其他的小波函数;
(2)非标准的Haar小波,其分解出来的系数矩阵中,高频系数的细节内容(轮廓、边缘等特征)不明显;
(3)函数 mydwt2 中列变换的矩阵对象为输入矩阵,这是错误的,其矩阵对象应该是行变换后的缓存矩阵;
(4)函数 mydwt2 的输出用[LL,HL,LH,HH]表示,不是很规范,应改为[cA,cV,cH,cD]来表示,即一级小波变换输出的系数矩阵有4个部分:平均部分、垂直细节部分、水平细节部分和对角线细节部分。
(5)函数 mywavedec2 的输出 y 是与输入矩阵 x 相同大小的矩阵,并且已将N级分解后所有的平均、细节系数组合成一体的。实际上,这种定义只对Haar小波有效。
(6)原程序中要调用 modmat 函数对图像矩阵进行修剪,使之能被 2 的 N 次方整除,主要是为了生成塔式结构图像而设的,对上述问题修正后,这个 modmat 函数已不需使用了。
针对上述问题,我对程序作了修正,发布在今天的3篇文章里,请大家点击查看。新修正的程序更为简洁易懂,功能也有所增强,可以用任意的小波函数进行小波分解,可根据小波分解系数矩阵重构出指定分解级的低频系数和原始图像。
(原)自己动手编写小波信号分解与重构的Matlab程序
下面,我把自己编写的小波一维、二维信号分解和重构Matlab程序共享出来,也希望有朋友共享自编的程序,共同学习,提高程序的效率和简洁性。
1、《小波图像分解与重构程序存在的问题与解决办法》
首先要说明的一点是,虽然是自己编写Matlab程序,但并不是说一点也不用Matlab的自带函数。我们要编写的是实现小波变换的主要功能函数,而绘图等基本功能还是要用到Matlab函数的。而且,根据小波变换的滤波器组原理,原始信号要通过低通、高通滤波器处理,这里就涉及到卷积这一运算步骤。卷积——FFT算法的实现,相信很多朋友都能用Matlab、C语言等来实现,不过与Matlab自带的用机器语言编写的FFT程序相比,运算速度一般会慢几倍、几十倍。所以,我的程序里边涉及卷积的就直接调用Matlab的conv()函数了。
我们知道,小波变换的一级分解过程是,原始信号分别进行低通、高通滤波,再分别进行二元下抽样,就得到低频、高频(也称为平均、细节)两部分系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。以下是一维小波分解的程序:
function [cA,cD] = mydwt(x,lpd,hpd,dim);
% 函数 [cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]
% 输入参数:x——输入序列;
% lpd——低通滤波器;
% hpd——高通滤波器;
% dim——小波分解级数。
% 输出参数:cA——平均部分的小波分解系数;
% cD——细节部分的小波分解系数。

cA=x; % 初始化cA,cD
cD=[];
for i=1:dim
cvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()
dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数
cvh=conv(cA,hpd); % 高通滤波
dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数
cA=dnl; % 下抽样后的平均部分系数进入下一层分解
cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cD
end

function y=downspl(x);
% 函数 Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列 Y。
% 下抽样是对输入序列取其偶数位,舍弃奇数位。例如 x=[x1,x2,x3,x4,x5],则 y=[x2,x4].

N=length(x); % 读取输入序列长度
M=floor(N/2); % 输出序列的长度是输入序列长度的一半(带小数时取整数部分)
i=1:M;
y(i)=x(2*i);
而重构则是分解的逆过程,对低频系数、高频系数分别进行上抽样和低通、高通滤波处理。要注意重构时同一级的低频、高频系数的个数必须相等。
function y = myidwt(cA,cD,lpr,hpr);
% 函数 MYIDWT() 对输入的小波分解系数进行逆离散小波变换,重构出信号序列 y
% 输入参数:cA —— 平均部分的小波分解系数;
% cD —— 细节部分的小波分解系数;
% lpr、hpr —— 重构所用的低通、高通滤波器。

lca=length(cA); % 求出平均、细节部分分解系数的长度
lcd=length(cD);

while (lcd)>=(lca) % 每一层重构中,cA 和 cD 的长度要相等,故每层重构后,
% 若lcd小于lca,则重构停止,这时的 cA 即为重构信号序列 y 。
upl=upspl(cA); % 对平均部分系数进行上抽样
cvl=conv(upl,lpr); % 低通卷积

cD_up=cD(lcd-lca+1:lcd); % 取出本层重构所需的细节部分系数,长度与本层平均部分系数的长度相等
uph=upspl(cD_up); % 对细节部分系数进行上抽样
cvh=conv(uph,hpr); % 高通卷积

cA=cvl+cvh; % 用本层重构的序列更新cA,以进行下一层重构
cD=cD(1:lcd-lca); % 舍弃本层重构用到的细节部分系数,更新cD
lca=length(cA); % 求出下一层重构所用的平均、细节部分系数的长度
lcd=length(cD);
end % lcd < lca,重构完成,结束循环
y=cA; % 输出的重构序列 y 等于重构完成后的平均部分系数序列 cA

function y=upspl(x);
% 函数 Y = UPSPL(X) 对输入的一维序列x进行上抽样,即对序列x每个元素之间
% 插零,例如 x=[x1,x2,x3,x4],上抽样后为 y=[x1,0,x2,0,x3,0,x4];

N=length(x); % 读取输入序列长度
M=2*N-1; % 输出序列的长度是输入序列长度的2倍再减一
for i=1:M % 输出序列的偶数位为0,奇数位按次序等于相应位置的输入序列元素
if mod(i,2)
y(i)=x((i+1)/2);
else
y(i)=0;
end
end
我们知道,二维小波分解重构可以用一系列的一维小波分解重构来实现。以下程序是基于Haar小波的二维小波分解和重构过程:
function [LL,HL,LH,HH]=mydwt2(x);
% 函数 MYDWT2() 对输入的r*c维矩阵 x 进行二维小波分解,输出四个分解系数子矩阵[LL,HL,LH,HH]
% 输入参数:x —— 输入矩阵,为r*c维矩阵。
% 输出参数:LL,HL,LH,HH —— 是分解系数矩阵的四个相等大小的子矩阵,大小均为 r/2 * c/2 维
% LL:低频部分分解系数; HL:垂直方向分解系数;
% LH:水平方向分解系数; HH:对角线方向分解系数。

lpd=[1/2 1/2];hpd=[-1/2 1/2]; % 默认的低通、高通滤波器
[row,col]=size(x); % 读取输入矩阵的大小

for j=1:row % 首先对输入矩阵的每一行序列进行一维离散小波分解
tmp1=x(j,:);
[ca1,cd1]=mydwt(tmp1,lpd,hpd,1);
x(j,:)=[ca1,cd1]; % 将分解系数序列再存入矩阵x中,得到[L|H]
end
for k=1:col % 再对输入矩阵的每一列序列进行一维离散小波分解
tmp2=x(:,k);
[ca2,cd2]=mydwt(tmp2,lpd,hpd,1);
x(:,k)=[ca2,cd2]; % 将分解所得系数存入矩阵x中,得到[LL,Hl;LH,HH]
end

LL=x(1:row/2,1:col/2); % LL是矩阵x的左上角部分
LH=x(row/2+1:row,1:col/2); % LH是矩阵x的左下角部分
HL=x(1:row/2,col/2+1:col); % HL是矩阵x的右上角部分
HH=x(row/2+1:row,col/2+1:col); % HH是矩阵x的右下角部分

function y=myidwt2(LL,HL,LH,HH);
% 函数 MYIDWT2() 对输入的子矩阵序列进行逆小波变换,重构出矩阵 y
% 输入参数:LL,HL,LH,HH —— 是四个大小均为 r*c 维的矩阵
% 输出参数:y —— 是一个大小为 2r*2c 维的矩阵

lpr=[1 1];hpr=[1 -1]; % 默认的低通、高通滤波器
tmp_mat=[LL,HL;LH,HH]; % 将输入的四个矩阵组合为一个矩阵
[row,col]=size(tmp_mat); % 求出组合矩阵的行列数

for k=1:col % 首先对组合矩阵tmp_mat的每一列,分开成上下两半
ca1=tmp_mat(1:row/2,k); % 分开的两部分分别作为平均系数序列ca1、细节系数序列cd1
cd1=tmp_mat(row/2+1:row,k);
tmp1=myidwt(ca1,cd1,lpr,hpr); % 重构序列
yt(:,k)=tmp1; % 将重构序列存入待输出矩阵 yt 的相应列,此时 y=[L|H]
end

for j=1:row % 将输出矩阵 y 的每一行,分开成左右两半
ca2=yt(j,1:col/2); % 分开的两部分分别作为平均系数序列ca2、细节系数序列cd2
cd2=yt(j,col/2+1:col);
tmp2=myidwt(ca2,cd2,lpr,hpr); % 重构序列
yt(j,:)=tmp2; % 将重构序列存入待输出矩阵 yt 的相应行,得到最终的输出矩阵 y=yt
end
y=yt;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
钺小夏侯pf
2015-10-19 · TA获得超过2460个赞
知道小有建树答主
回答量:578
采纳率:69%
帮助的人:388万
展开全部
(1)程序所用的小波函数只有非标准的Haar小波,其滤波器组为 Lo_D=[1/2 1/2], Hi_D=[-1/2 1/2],是固化在 mydwt2.m 的程序中的,不能选择其他的小波函数;
(2)非标准的Haar小波,其分解出来的系数矩阵中,高频系数的细节内容(轮廓、边缘等特征)不明显;
(3)函数 mydwt2 中列变换的矩阵对象为输入矩阵,这是错误的,其矩阵对象应该是行变换后的缓存矩阵;
(4)函数 mydwt2 的输出用[LL,HL,LH,HH]表示,不是很规范,应改为[cA,cV,cH,cD]来表示,即一级小波变换输出的系数矩阵有4个部分:平均部分、垂直细节部分、水平细节部分和对角线细节部分。
(5)函数 mywavedec2 的输出 y 是与输入矩阵 x 相同大小的矩阵,并且已将N级分解后所有的平均、细节系数组合成一体的。实际上,这种定义只对Haar小波有效。
(6)原程序中要调用 modmat 函数对图像矩阵进行修剪,使之能被 2 的 N 次方整除,主要是为了生成塔式结构图像而设的,对上述问题修正后,这个 modmat 函数已不需使用了。
针对上述问题,我对程序作了修正,发布在今天的3篇文章里,请大家点击查看。新修正的程序更为简洁易懂,功能也有所增强,可以用任意的小波函数进行小波分解,可根据小波分解系数矩阵重构出指定分解级的低频系数和原始图像。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式