2个回答
展开全部
2008年云南省中考数学试卷(课改区)
参考答案及评分标准
一、选择题(满分30分)
DCBAC ABCBD
二、填空题(满分24分)
11. 12. 2 13. 60 14. 15. 乙 16. 7.5 17. 18. 10,3n+1
三、解答题(满分66分)
19.原式 ………………………………(3分)
………………………………(6分)
………………………………(9分)
20. 设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元. ……………………(1分)
依题意,得 ………………………………(6分)
解这个方程组,得 ………………………………(9分)
答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分)
(注:其他解法仿照以上评分标准.)
21.(1)A1(0,4),B1(2,2),C1(1,1)
(2)A2(6,4),B2(4,2),C2(5,1)
(3)△A1B1C1与△A2B2C2关于直线 轴对称.
注:本题第(1),(2)题各4分,第(3)小题2分.
22.(1)1.32,8.46;
(2)15.22,28.8;
(3)本题答案不唯一,言之有理即可.
以下答案仅供参考.
①2000—2050年中国60岁以及以上人口数呈上升趋势;
②2000—2050年中国60岁以及以上人口数所占总人口数比率逐年加大;
③2020年到2040年中国总人口增长逐渐变缓,2040年2050年呈下降趋势;
④2050年中国60岁以及以上人口数所占总人口数比率约为28.8%.
注:本题第(1)、(2)每一个空格2分,共8分,第(3)小题正确3分.
23. (1) ΔAED≌ΔDFC. ………………………………(1分)
∵ 四边形ABCD是正方形,
∴ AD=DC,∠ADC=90º. ………………………………(3分)
又∵ AE⊥DG,CF‖AE,
∴ ∠AED=∠DFC=90º, ………………………………(5分)
∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º,
∴ ∠EAD=∠FDC. ………………………………(7分)
∴ ΔAED≌ΔDFC (AAS). ………………………………(8分)
(2) ∵ ΔAED≌ΔDFC,
∴ AE=DF,ED=FC. ………………………………(10分)
∵ DF=DE+EF,
∴ AE=FC+EF. ………………………………(12分)
24. (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP‖CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴ 得x2-3x+2=0. ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14)
应该是比较完整的答案哈,你对一下,注意有步骤分哈,祝你有个好成绩。
参考答案及评分标准
一、选择题(满分30分)
DCBAC ABCBD
二、填空题(满分24分)
11. 12. 2 13. 60 14. 15. 乙 16. 7.5 17. 18. 10,3n+1
三、解答题(满分66分)
19.原式 ………………………………(3分)
………………………………(6分)
………………………………(9分)
20. 设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元. ……………………(1分)
依题意,得 ………………………………(6分)
解这个方程组,得 ………………………………(9分)
答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分)
(注:其他解法仿照以上评分标准.)
21.(1)A1(0,4),B1(2,2),C1(1,1)
(2)A2(6,4),B2(4,2),C2(5,1)
(3)△A1B1C1与△A2B2C2关于直线 轴对称.
注:本题第(1),(2)题各4分,第(3)小题2分.
22.(1)1.32,8.46;
(2)15.22,28.8;
(3)本题答案不唯一,言之有理即可.
以下答案仅供参考.
①2000—2050年中国60岁以及以上人口数呈上升趋势;
②2000—2050年中国60岁以及以上人口数所占总人口数比率逐年加大;
③2020年到2040年中国总人口增长逐渐变缓,2040年2050年呈下降趋势;
④2050年中国60岁以及以上人口数所占总人口数比率约为28.8%.
注:本题第(1)、(2)每一个空格2分,共8分,第(3)小题正确3分.
23. (1) ΔAED≌ΔDFC. ………………………………(1分)
∵ 四边形ABCD是正方形,
∴ AD=DC,∠ADC=90º. ………………………………(3分)
又∵ AE⊥DG,CF‖AE,
∴ ∠AED=∠DFC=90º, ………………………………(5分)
∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º,
∴ ∠EAD=∠FDC. ………………………………(7分)
∴ ΔAED≌ΔDFC (AAS). ………………………………(8分)
(2) ∵ ΔAED≌ΔDFC,
∴ AE=DF,ED=FC. ………………………………(10分)
∵ DF=DE+EF,
∴ AE=FC+EF. ………………………………(12分)
24. (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP‖CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴ 得x2-3x+2=0. ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14)
应该是比较完整的答案哈,你对一下,注意有步骤分哈,祝你有个好成绩。
展开全部
2008年云南省中考数学试卷(课改区)
参考答案及评分标准
一、选择题(满分30分)
DCBAC ABCBD
二、填空题(满分24分)
11. 12. 2 13. 60 14. 15. 乙 16. 7.5 17. 18. 10,3n+1
三、解答题(满分66分)
19.原式 ………………………………(3分)
………………………………(6分)
………………………………(9分)
20. 设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元. ……………………(1分)
依题意,得 ………………………………(6分)
解这个方程组,得 ………………………………(9分)
答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分)
(注:其他解法仿照以上评分标准.)
21.(1)A1(0,4),B1(2,2),C1(1,1)
(2)A2(6,4),B2(4,2),C2(5,1)
(3)△A1B1C1与△A2B2C2关于直线 轴对称.
注:本题第(1),(2)题各4分,第(3)小题2分.
22.(1)1.32,8.46;
(2)15.22,28.8;
(3)本题答案不唯一,言之有理即可.
以下答案仅供参考.
①2000—2050年中国60岁以及以上人口数呈上升趋势;
②2000—2050年中国60岁以及以上人口数所占总人口数比率逐年加大;
③2020年到2040年中国总人口增长逐渐变缓,2040年2050年呈下降趋势;
④2050年中国60岁以及以上人口数所占总人口数比率约为28.8%.
注:本题第(1)、(2)每一个空格2分,共8分,第(3)小题正确3分.
23. (1) ΔAED≌ΔDFC. ………………………………(1分)
∵ 四边形ABCD是正方形,
∴ AD=DC,∠ADC=90º. ………………………………(3分)
又∵ AE⊥DG,CF‖AE,
∴ ∠AED=∠DFC=90º, ………………………………(5分)
∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º,
∴ ∠EAD=∠FDC. ………………………………(7分)
∴ ΔAED≌ΔDFC (AAS). ………………………………(8分)
(2) ∵ ΔAED≌ΔDFC,
∴ AE=DF,ED=FC. ………………………………(10分)
∵ DF=DE+EF,
∴ AE=FC+EF. ………………………………(12分)
24. (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP‖CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴ 得x2-3x+2=0. ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
参考答案及评分标准
一、选择题(满分30分)
DCBAC ABCBD
二、填空题(满分24分)
11. 12. 2 13. 60 14. 15. 乙 16. 7.5 17. 18. 10,3n+1
三、解答题(满分66分)
19.原式 ………………………………(3分)
………………………………(6分)
………………………………(9分)
20. 设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元. ……………………(1分)
依题意,得 ………………………………(6分)
解这个方程组,得 ………………………………(9分)
答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元. ……………(10分)
(注:其他解法仿照以上评分标准.)
21.(1)A1(0,4),B1(2,2),C1(1,1)
(2)A2(6,4),B2(4,2),C2(5,1)
(3)△A1B1C1与△A2B2C2关于直线 轴对称.
注:本题第(1),(2)题各4分,第(3)小题2分.
22.(1)1.32,8.46;
(2)15.22,28.8;
(3)本题答案不唯一,言之有理即可.
以下答案仅供参考.
①2000—2050年中国60岁以及以上人口数呈上升趋势;
②2000—2050年中国60岁以及以上人口数所占总人口数比率逐年加大;
③2020年到2040年中国总人口增长逐渐变缓,2040年2050年呈下降趋势;
④2050年中国60岁以及以上人口数所占总人口数比率约为28.8%.
注:本题第(1)、(2)每一个空格2分,共8分,第(3)小题正确3分.
23. (1) ΔAED≌ΔDFC. ………………………………(1分)
∵ 四边形ABCD是正方形,
∴ AD=DC,∠ADC=90º. ………………………………(3分)
又∵ AE⊥DG,CF‖AE,
∴ ∠AED=∠DFC=90º, ………………………………(5分)
∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º,
∴ ∠EAD=∠FDC. ………………………………(7分)
∴ ΔAED≌ΔDFC (AAS). ………………………………(8分)
(2) ∵ ΔAED≌ΔDFC,
∴ AE=DF,ED=FC. ………………………………(10分)
∵ DF=DE+EF,
∴ AE=FC+EF. ………………………………(12分)
24. (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP‖CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴ 得x2-3x+2=0. ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询