用六种不同颜色(全用到)染一个正方体,则不同的染色方式共有几种?(用排列组合)

要用排列组合,如:C2/3、A3/4(旋转后一样视为一种)... 要用排列组合,如:C2/3、A3/4(旋转后一样视为一种) 展开
miniappL6NK2PxHsWPig
2013-11-15 · TA获得超过5004个赞
知道大有可为答主
回答量:1202
采纳率:94%
帮助的人:586万
展开全部
我算出来是30种,你先看看对不对:
  如果不考虑旋转,而是把这个正方体固定在空间中,那么它的六个面就是各不相同的。可分别记作:上、下、左、右、前、后。
  在这种情况下,染色方案就是一个全排列:A(6,6)=6!。
再考虑旋转问题:
  对于上面所说的“固定”正方体,任何的旋转都会得到一个新的“固定”正方体。显然,对“可旋转”正方体而言,这两个“固定”正方体是相同的。也就是说,每一种旋转,对于上面的染色方案都是一次重复。单说一个“固定”正方体,它的旋转方式有:
(1)上下不变,原地旋转:有3种新的结果,加上原来的就是4种;
(2)改变上下方位:确定了上,也就确定了下,六个面,所以共有6种上下方位;
  上面两种变换是独立的,即:对(2)中的每一对上下,在(1)中都有4种旋转结果。所以全部的旋转方式就是:4×6=24种。
  而这些旋转方式,对于每个“固定”正方体都是一样的。所以,对于每个“可旋转”正方体而言,就有24次重复。那么去掉重复的染色方案就是:6!÷24=30种。

  还可以这样想:六种颜色,染到六个方位中。因为允许旋转,所以我们染色所考虑的不是每种颜色的绝对方位,而是它们的相对位置。采用分步法:
(1)先染一个方位,即确定一个起点:
  因为不考虑绝对位置,所以谁做第一个、染什么颜色,都一样。所以,这一步只有1种结果。不妨先确定“上”,剩下的就是确定另外5个方位和5种颜色。
(2)染“下”:
  因为“上”确定了,所以“下”也就确定了,所以只需考虑颜色:可选的颜色有5种;
(3)染“前后左右”:
  4种颜色的排列;不过这4个方位是循环的,因此这是个“圆周排列”。结果就是:
    A(4,4)/4=6;
  所以,最终结果为:1×5×6=30种。
亦梦夕寐
2013-11-19
知道答主
回答量:15
采纳率:0%
帮助的人:6.9万
展开全部
每一面都图 并且颜色都要用 那就是6*5*4*3*2*1 也就是A6I6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式