请教高中数学问题,求高手解答,要有详细步骤哦~

370116
高赞答主

2014-02-16 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
由题意得到e=c/a=1/2, b=2根号3.则有c^2/a^2=1/4, 即有1-b^2/a^2=1/4
12/a^2=3/4, a^2=16
故椭圆方程是x^2/16+y^2/12=1
2.设A(x1,y1),B(x2,y2),直线AB方程是y=1/2x+t代入到椭圆中有:
x^2+tx+t^2-12=0

由判别式=t^2-4(t^2-12)>0,得到-4<t<4
x1+x2=-t,x1x2=t^2-12
x=2代入椭圆中有y=土3,即有PQ=6

故有S(APBQ)=1/2PQ*|x2-x1|=1/2*6*根号[t^2-4(t^2-12)]=3根号(48-3t^2)
故当t=0时,S有最大值是12根号3.
3.P坐标是(2,3),则有k1=K(PA)=(Y1-3)/(x1-2),k2=K(PB)=(y2-3)/(x2-2)
k1+k2=(y1-3)/(x1-2)+(y2-3)/(x2-2)=(1/2x1+t-3)/(x1-2)+(1/2x2+t-3)/(x2-2)
=[(1/2x1+t-3)*(x2-2)+(1/2x2+t-3)(x1-2)]/(x1-2)(x2-2)
=[1/2x1x2-x1+(t-3)x2-2(t-3)+1/2x1x2-x2+(t-3)x1-2(t-3)]/(x1x2-2(x1+x2)+4)
=[x1x2+(t-4)(x1+x2)-4(t-3)]/(t^2-12-2(-t)+4)
=(t^2-12+(t-4)*(-t)-4(t-3))/(t^2+2t-8)
=(t^2-12-t^2+4t-4t+12)/(t^2+2t-8)
=0
故K1+K2是一个常数0.
更多追问追答
追问
第二题呢?
追答
第二题目不是已经做好了吗?
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式