设抛物线C:y2=2px(p>)的焦点为F,经过点F的直线与抛物线交于A,B两点,若M是抛物线准
1个回答
展开全部
题目不完整,我试着补充一下吧
设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点的坐标分别为(x1,y1)、(x2,y2),y1>0,y2<0,M是抛物线准线上的一点,O是坐标原点。若MA、MF、MB的斜率分别记为:Kma=a,Kmf=b,Kmb=c.(1)若y1y2=-4,求抛物线的方程。(2)当b=2时,求a+c的值
设定点M坐标为(m,n),动点A坐标(x1,y1),B坐标(x2,y2)
抛物线上的点到焦点距离等于到准线距离,即:
|AF|=x1+ p/2,|MF|=m+ p/2,|BF|=x2+ p/2
由|AF|、|MF|、|BF|三者成等差数列可知,|AF|+|BF|=2|MF|,即:
x1+ p/2 + x2+ p/2=2(m+ p/2),化简得m=(x1+x2)/2
A、B两点在抛物线上,∴y1²=2px1,y2²=2px2
两式相减得到:(y1-y2)(y1+y2)=2p(x1-x2)
∴AB斜率k=(y1-y2)/(x1-x2)=2p/(y1+y2)
线段AB的垂直平分线满足:垂直于AB且过AB中点[(x1+x2)/2,(y1+y2)/2]
AB垂直平分线方程为
y=-[(y1+y2)/2p][x-(x1+x2)/2]+ (y1+y2)/2
=-[(y1+y2)/2p](x-m-p)
此直线必过定点Q(m+p,0)
设抛物线y^2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,且A,B两点的坐标分别为(x1,y1)、(x2,y2),y1>0,y2<0,M是抛物线准线上的一点,O是坐标原点。若MA、MF、MB的斜率分别记为:Kma=a,Kmf=b,Kmb=c.(1)若y1y2=-4,求抛物线的方程。(2)当b=2时,求a+c的值
设定点M坐标为(m,n),动点A坐标(x1,y1),B坐标(x2,y2)
抛物线上的点到焦点距离等于到准线距离,即:
|AF|=x1+ p/2,|MF|=m+ p/2,|BF|=x2+ p/2
由|AF|、|MF|、|BF|三者成等差数列可知,|AF|+|BF|=2|MF|,即:
x1+ p/2 + x2+ p/2=2(m+ p/2),化简得m=(x1+x2)/2
A、B两点在抛物线上,∴y1²=2px1,y2²=2px2
两式相减得到:(y1-y2)(y1+y2)=2p(x1-x2)
∴AB斜率k=(y1-y2)/(x1-x2)=2p/(y1+y2)
线段AB的垂直平分线满足:垂直于AB且过AB中点[(x1+x2)/2,(y1+y2)/2]
AB垂直平分线方程为
y=-[(y1+y2)/2p][x-(x1+x2)/2]+ (y1+y2)/2
=-[(y1+y2)/2p](x-m-p)
此直线必过定点Q(m+p,0)
追问
不好意思,题目不完整,原题是:M是抛物线准线上的一点,求证:直线MA、MF、MB的斜率成等差数列。
追答
F(p/2,0),设AB直线方程为:y=k(x-p/2),代入抛物线方程,k^2*(x-p/2)^2=2px,k^2*x^2-
p(k^2+1)x+p^2/4=0,
解得:x1=[p(k^2+2)+2p√(k^2+1)]/(2k^2),
x2=[p(k^2+2)-2p√(k^2+1)]/(2k^2),
再代入直线方程求得:y1=p(1+√(k^2+1))/k, y2=p(1-√(k^2+1))/k
即A(x1,y1),B(x2,y2)
设M(-p/2,y3),则MF的斜率kmf=-y3/p,
MA的斜率kma=(y3-y1)/(-p/2-x1)=(kp(1+√(k^2+1)-k^2*y3)/[p(k^2+1+√(k^2+1))],
MB的斜率kmb=(y3-y2)/(-p/2-x2)= (kp(1-√(k^2+1)-k^2*y3)/[p(k^2+1-√(k^2+1))],
kma+kmb=-2*y3/p=2*kmf,
所以,MA,MF,MB斜率成等差数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询