在平面直角坐标系中,将抛物线y=x^2+2x+3绕着它与y轴的交点旋转180度,所得抛物线的解析式

是()主要讲讲中心对称的坐标变化,请详细讲解,原创讲解!!... 是( )主要讲讲中心对称的坐标变化,请详细讲解,原创讲解!! 展开
 我来答
tony罗腾
2013-12-28 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293893
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
解:由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(-1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=-(x-1)2+4.
追问
中心对称怎么就变成了(1,4)呢?能详细讲讲吗?
为什么啊?!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式