初中数学问题!!!!!!

【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】... 【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由. 展开
百度网友c2601b0
2014-02-16
知道答主
回答量:2
采纳率:0%
帮助的人:2.6万
展开全部
解答:

(1)证明:∵△ABC、△AMN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在△BAM和△CAN中,

∴△BAM≌△CAN(SAS),

∴∠ABC=∠ACN.

(2)解:结论∠ABC=∠ACN仍成立.

理由如下:∵△ABC、△AMN是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM=∠CAN,

∵在△BAM和△CAN中,

∴△BAM≌△CAN(SAS),

∴∠ABC=∠ACN.

(3)解:∠ABC=∠ACN.

理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,

∴底角∠BAC=∠MAN,

∴△ABC∽△AMN,

∴=,

又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,

∴∠BAM=∠CAN,

∴△BAM∽△CAN,

∴∠ABC=∠ACN.
苏干孟畅然
2019-04-02 · TA获得超过3834个赞
知道大有可为答主
回答量:3095
采纳率:27%
帮助的人:204万
展开全部
-(a-b)=b-a
所以:写出相反数:a-b是b-a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式