在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当

在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=BM;(2)如... 在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE= BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是 ;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE= ,且AF:FD=1:2时,求线段DG的长. 展开
 我来答
流苏EK79E
推荐于2016-12-01 · TA获得超过208个赞
知道答主
回答量:131
采纳率:83%
帮助的人:55.1万
展开全部
(1)证明见解析;(2)BD+2DE= BM;(3)


试题分析:(1)过点M作MF⊥BC交BD于点F,推出FM=DN,根据AAS证△EFM和△EDN全等,推出DE=EF,根据正方形的性质和勾股定理求出即可;
(2)过点M作MF⊥BC交BD于点F,推出FM=DN,根据AAS证△EFM和△EDN全等,推出DE=EF,根据正方形的性质和勾股定理求出即可;
(3)根据已知求出CM的长,证△ABF∽△DNF,得出比例式,代入后求出CD长,求出FM长即可.
试题解析:(1)过点M作MF⊥BC交BD于点F,
∵四边形ABCD是正方形,
∴∠C=90°,
∴FM∥CD,
∴∠NDE=∠MFE,
∴FM=BM,
∵BM=DN,
∴FM=DN,
在△EFM和△EDN中,

∴△EFM≌△EDN,
∴EF=ED,
∴BD-2DE=BF,
根据勾股定理得:BF= BM,
即BD-2DE= BM.
(2)过点M作MF⊥BC交BD于点F,与(1)证法类似:BD+2DE=BF= BM,
(3)由(2)知,BD+2DE= BM,BD= BC,
∵DE=

∴CM=2,
∵AB∥CD,
∴△ABF∽△DNF,
∴AF:FD=AB:ND,
∵AF:FD=1:2,
∴AB:ND=1:2,
∴CD:ND=1:2,
CD:(CD+2)=1:2,
∴CD=2,∴FD=
∴FD:BM=1:3,
∴DG:BG=1:3,
∴DG=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式