a+b+c≥3√abc,取等号的条件是什么?

 我来答
匿名用户
2015-02-17
展开全部
证明:对于正数a、b、c,有a³+b³+c³≥3abc成立,等号当且仅当a=b=c时成立;
因为:
a³+b³+c³-3abc
=(a+b+c)(a²+b²+c²-ab-bc-ac)
=1/2×(a+b+c)(2a²+2b²+2c²-2ab-2bc-2ac)
=1/2×(a+b+c)[(a-b)²+(b-c)²+(c-a)²]
可以看出,上式的结果是个非负数,所以a³+b³+c³≥3abc成立;
利用这一结果可得:
a+b+c≥3倍三次根号(abc)
即::(a+b+c)/3≥三次根号(abc)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式