如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为( ) A.1︰2&

如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为()A.1︰2B.1︰3C.1︰4D.1︰5... 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于点D.则△BCD与△ABC的周长之比为( ) A.1︰2 B.1︰3 C.1︰4 D.1︰5 展开
 我来答
手机用户96902
2014-10-24 · 超过58用户采纳过TA的回答
知道答主
回答量:111
采纳率:100%
帮助的人:99.6万
展开全部
A


试题分析:易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的周长比等于相似比即可得到正确的结论.
∵∠B=∠B,∠BDC=∠BCA=90°,
∴△BCD∽△BAC;①
∴∠BCD=∠A=30°;
Rt△BCD中,∠BCD=30°,则BC=2BD;
由①得:C BCD :C BAC =BD:BC=1:2;
故选A.
点评:解题的关键是熟练掌握相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式