在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和... 在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).(1)求此二次函数的表达式;(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得△BOD∽△BAC?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由. 展开
 我来答
手机用户37365
推荐于2016-03-08 · 超过67用户采纳过TA的回答
知道答主
回答量:125
采纳率:0%
帮助的人:162万
展开全部
(1)∵二次函数图象顶点的横坐标为1,且过点(2,3)和(-3,-12),
∴由
?
b
2a
=1
4a+2b+c=3
9a?3b+2=?12

解得
a=?1
b=2
c=3

∴此二次函数的表达式为y=-x2+2x+3;

(2)假设存在直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),使得以B,O,D为顶点的三角形与△BAC相似.
在y=-x2+2x+3中,令y=0,则由-x2+2x+3=0,
解得x1=-1,x2=3
∴A(-1,0),B(3,0)
令x=0,得y=3.
∴C(0,3).
设过点O的直线l交BC于点D,过点D作DE⊥x轴于点E.
∵点B的坐标为(3,0),点C的坐标为(0,3),点A的坐标为(-1,0).
∴|AB|=4,|OB|=|OC|=3,∠OBC=45°.
∴|BC|=
32+32
=3
2

要使△BOD∽△BAC或△BDO∽△BAC,
已有∠B=∠B,则只需
|BD|
|BC|
|BO|
|BA|
,①或
|BO|
|BC|
|BD|
|BA|
②成立.
若是①,则有|BD|=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式