求大神把凑微分法仔细讲一下好吗?

tattackor
2014-12-02 · TA获得超过3.5万个赞
知道大有可为答主
回答量:5083
采纳率:94%
帮助的人:875万
展开全部
凑微分法,是换元积分法的一种方法,教程应在不定积分部分.
最简单的积分是对照公式,
但我们有时需要积分的式子,与公式不同,但有些相似,这时,我们可以考虑,是否把dx变换成du的形式,[u=f(x)]把积分式中的x的的函数,变换成u的函数,使积分式符合公式形式.这样,就很方便的进行积分,再变换成x的形式.
例:∫cos3XdX公式:∫cosXdX=sinX+C
设:u=3X,du=3dX
∫cos3XdX=∫(cos3X)/3d(3X)=(1/3)∫cosudu=(1/3)sinu+C=(1/3)sin3X+C
能看懂吗?不懂再问.
很高兴你能把简单的看懂了,数学就是一步一步前进的,尤其是自学,不要讲进度,要注重理解和掌握.一遍不懂,再看一遍,弄懂了,再前进.因为我的许多知识也是来源于自学,也希望后学者有所成就.而虚拟分仅是游戏而已.
例2:∫2xe^(x^2)dx
设: u=x^2, du=2xdx
∫2xe^(x^2)dx=∫e^(x^2)*2xdx=∫e^udu=e^u+C=e^(x^2)+C例3:∫(sinX)^3*cosXdX
设: u=sinX, du=cosXdx
∫(sinX)^3*cosXdX=∫u^3du=(1/4)u^4+C=(1/4)(sinX)^4+C
百度网友cad823e29
2014-12-01 · 超过28用户采纳过TA的回答
知道答主
回答量:127
采纳率:0%
帮助的人:58.9万
展开全部
把被积分式,凑成某个函数的微分,的积分方法。
追答
凑微分法实际就是换元法,就是把被积函数代换成易解的积分形式,
比如求 (1/x)lnxdx积分时,因为lnx的导数(或微分)是1/x, 所以原式可化成
积分号下(lnx)d(lnx)从而得出等于 (ln²x)/2+c的结果。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式