如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE—ED—DC运动

如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE—ED—DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到... 如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE—ED—DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm 2 .已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段),则下列结论: ①当0<t≤5时,y= t 2 ;②当t=6秒时,△ABE≌△PQB;③cos∠CBE= ;④当t= 秒时,△ABE∽△QBP;其中正确的是( ) A.①② B.①③④ C.③④ D.①②④ 展开
 我来答
内裤控丶65
推荐于2016-11-30 · 超过57用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:56.5万
展开全部
D


试题分析:根据图(2)可以判断三角形的面积变化分为四段,①当点P在BE上运动,点Q到达点C时;②当点P到达点E时,点Q静止于点C,从而得到BC、BE的长度;③点P到达点D时,点Q静止于点C;④当点P在线段CD上,点Q仍然静止于点C时.

根据图(2)可得,当点P到达点E时点Q到达点C,
∵点P、Q的运动的速度分别是1cm/秒、2cm/秒
∴BC=BE=10,
∴AD=BC=10.
又∵从M到N的变化是4,
∴ED=4,
∴AE=AD-ED=10-4=6.
∵AD∥BC,
∴∠1=∠2,

故③错误;
如图1,过点P作PF⊥BC于点F,
∵AD∥BC,
∴∠1=∠2,


如图3,当t=6秒时,点P在BE上,点Q静止于点C处.

∴△ABE≌△PQB(SAS).
故②正确;

又∵∠A=∠Q=90°,
∴△ABE∽△QBP,故④正确.
综上所述,正确的结论是①②④.
故选D.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式