数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).证明:(Ⅰ)数列{Snn}是等比数列;

数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).证明:(Ⅰ)数列{Snn}是等比数列;(Ⅱ)Sn+1=4an.... 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,…).证明:(Ⅰ)数列{Snn}是等比数列;(Ⅱ)Sn+1=4an. 展开
 我来答
沧海467
推荐于2016-08-26 · TA获得超过304个赞
知道答主
回答量:172
采纳率:0%
帮助的人:141万
展开全部
解答:(I)证:由a1=1,an+1=
n+2
n
Sn(n=1,2,3,),
知a2=
2+1
1
S1=3a1
S2
2
4a1
2
=2
S1
1
=1
,∴
S2
2
S1
1
=2

又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=
n+2
n
Sn(n=1,2,3,),
∴nSn+1=2(n+1)Sn
Sn+1
n+1
Sn
n
=2
(n=1,2,3,…),
故数列{
Sn
n
}是首项为1,公比为2的等比数列.
(II)证明:Sn+1=4an.当n=1时,S2=a1+a2=4a1,等式成立.
由(1)知:
Sn
n
=1×2n?1
,∴Sn=n2n-1
当n≥2时,4an=4(Sn-Sn-1)=2n(2n-n+1)=(n+1)2n=Sn+1,等式成立.
因此对于任意正整数n≥1都有Sn+1=4an
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式