(2013?南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作

(2013?南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点... (2013?南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长. 展开
 我来答
桐小溪pr
2014-12-06 · 超过62用户采纳过TA的回答
知道答主
回答量:111
采纳率:50%
帮助的人:112万
展开全部
解:(1)PC与圆O相切,理由为:
过C点作直径CE,连接EB,如图,
∵CE为直径,
∴∠EBC=90°,即∠E+∠BCE=90°,
∵AB∥DC,
∴∠ACD=∠BAC,
∵∠BAC=∠E,∠BCP=∠ACD.
∴∠E=∠BCP,
∴∠BCP+∠BCE=90°,即∠PCE=90°,
∴CE⊥PC,
∴PC与圆O相切;

(2)∵AD是⊙O的切线,切点为A,
∴OA⊥AD,
∵BC∥AD,
∴AM⊥BC,
∴BM=CM=
1
2
BC=3,
∴AC=AB=9,
在Rt△AMC中,AM=
AC2?CM2
=6
2

设⊙O的半径为r,则OC=r,OM=AM-r=6
2
-r,
在Rt△OCM中,OM2+CM2=OC2,即32+(6
2
-r)2=r2,解得r=
27
2
8

∴CE=2r=
27
2
4
,OM=6
2
-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式