已知函数f(x)=ax3+bx2-3x(a,b∈R),f′(x)为f(x)的导函数,若f′(x)是偶函数且f′(1)=0(1
已知函数f(x)=ax3+bx2-3x(a,b∈R),f′(x)为f(x)的导函数,若f′(x)是偶函数且f′(1)=0(1)求函数f(x)的解析式;(2)若对于区间[-...
已知函数f(x)=ax3+bx2-3x(a,b∈R),f′(x)为f(x)的导函数,若f′(x)是偶函数且f′(1)=0(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值;(3)若过点M(2,m)(m≠2)作曲线y=f(x)条切线,求实数m取值范围.
展开
1个回答
展开全部
(1)∵f'(x)=3ax2+2bx-3,…(1分)
根据题意f'(x)是偶函数得b=0…(2分)
又f'(1)=0,∴3a-3-0,
∴a=1 …(3分)
∴f(x)=x3-3x.…(4分)
(2)令f'(x)=3x2-3=0,即3x2-3=0,解得x=±1.…(5分)
∵f(-1)=2,f(1)=-2,
∴当x∈[-2,2]时,f(x)max=2,f(x)min=-2.…(6分)
则对于区间x2=-
上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,
所以c≥4.
所以c的最小值为4.…(8分)
(3)∵点M(2,m)(m≠2)不在曲线y=f(x)上,
∴设切点为(x0,y0).则y0=x03-3x0.
∵f′(x0)=3x02-3,∴切线的斜率为3x02-3.
则3x02-3=
,即2x03-6x02+6+m=0.…(10分)
∵过点M(2,m)(m≠2),可作曲线y=f(x)的三条切线,
∴方程2x03-6x02+6+m=0有三个不同的实数解.
即函数g(x)=2x3-6x2+6+m有三个不同的零点.…(11分)
则g'(x)=6x2-12x.
令g'(x)=0,解得 x=0或x=2.
∴
,即
根据题意f'(x)是偶函数得b=0…(2分)
又f'(1)=0,∴3a-3-0,
∴a=1 …(3分)
∴f(x)=x3-3x.…(4分)
(2)令f'(x)=3x2-3=0,即3x2-3=0,解得x=±1.…(5分)
x | -2 | (-2,-1) | -1 | (-1,1) | 1 | (1,2) | 2 |
f'(x) | + | 0 | - | 0 | + | ||
f(x) | -2 | ↗ | 极大值 | ↘ | 极小值 | ↗ | 0 |
∴当x∈[-2,2]时,f(x)max=2,f(x)min=-2.…(6分)
则对于区间x2=-
a |
所以c≥4.
所以c的最小值为4.…(8分)
(3)∵点M(2,m)(m≠2)不在曲线y=f(x)上,
∴设切点为(x0,y0).则y0=x03-3x0.
∵f′(x0)=3x02-3,∴切线的斜率为3x02-3.
则3x02-3=
x03-3x0-m |
x0-2 |
∵过点M(2,m)(m≠2),可作曲线y=f(x)的三条切线,
∴方程2x03-6x02+6+m=0有三个不同的实数解.
即函数g(x)=2x3-6x2+6+m有三个不同的零点.…(11分)
则g'(x)=6x2-12x.
令g'(x)=0,解得 x=0或x=2.
x | (-∞,0) | 0 | (0,2) | 2 | (2,+∞) |
g'(x) | + | 0 | - | 0 | + |
g(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|