在数列{an}中,a1=1,当n≥2时,满足an-an-1+2an?an-1=0.(Ⅰ)求证:数列{1an}是等差数列,并求数列{an
在数列{an}中,a1=1,当n≥2时,满足an-an-1+2an?an-1=0.(Ⅰ)求证:数列{1an}是等差数列,并求数列{an}的通项公式;(Ⅱ)令bn=an2n...
在数列{an}中,a1=1,当n≥2时,满足an-an-1+2an?an-1=0.(Ⅰ)求证:数列{1an}是等差数列,并求数列{an}的通项公式;(Ⅱ)令bn=an2n+1,数列{bn}的前n项和为Tn,求使得2Tn(2n+1)≤m(n2+3)对所有n∈N*都成立的实数m的取值范围.
展开
1个回答
展开全部
解答:(I)证明:∵当n≥2时,满足an-an-1+2an?an-1=0.
∴
?
=2,
∴数列{
}是等差数列,首项为
=1,公差d=2.
∴
=1+2(n?1)=2n-1.
(II)解:bn=
=
=
(
?
),
∴数列{bn}的前n项和为Tn=
[(1?
)+(
?
)+…+(
?
)]
=
(1?
)
=
.
∴2Tn(2n+1)≤m(n2+3)化为2n≤m(n2+3),化为m≥
.
令f(n)=
=
,
函数g(x)=x+
(x>0),g′(x)=1?
=
,
令g′(x)>0,解得x>
,此时函数g(x)单调递增;令g′(x)<0,解得0<x<
,此时函数g(x)单调递减.
∴当x=
时,函数g(x)取得最小值.
∴当n=1,2时,f(n)单调递增;当n≥2时,f(n)单调递减.
∴当n=2时,f(n)取得最大值,∴m≥
.
∴
1 |
an |
1 |
an?1 |
∴数列{
1 |
an |
1 |
a1 |
∴
1 |
an |
(II)解:bn=
an |
2n+1 |
1 |
(2n?1)(2n+1) |
1 |
2 |
1 |
2n?1 |
1 |
2n+1 |
∴数列{bn}的前n项和为Tn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |
=
1 |
2 |
1 |
2n+1 |
=
n |
2n+1 |
∴2Tn(2n+1)≤m(n2+3)化为2n≤m(n2+3),化为m≥
2n |
n2+3 |
令f(n)=
2n |
n2+3 |
2 | ||
n+
|
函数g(x)=x+
3 |
x |
3 |
x2 |
x2?3 |
x2 |
令g′(x)>0,解得x>
3 |
3 |
∴当x=
3 |
∴当n=1,2时,f(n)单调递增;当n≥2时,f(n)单调递减.
∴当n=2时,f(n)取得最大值,∴m≥
4 |
7 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询