关于高等数学求极限的问题
lim根号(4x^2-1)/(2x+1)(x-﹥∞),我是把根号(4x^2-1)变成根号(2x+1)*根号(2x-1);把2x+1变成根号(2x+1)*根号(2x+1),...
lim根号(4x^2-1)/(2x+1)(x-﹥∞),我是把 根号(4x^2-1)变成 根号(2x+1)*根号(2x-1); 把2x+1变成 根号(2x+1)*根号(2x+1),然后约去 根号(2x+1),求得答案为1。
但是标准答案是极限不存在,求大神帮忙解答。应该怎么做? 展开
但是标准答案是极限不存在,求大神帮忙解答。应该怎么做? 展开
展开全部
解答:
这种题目以后再次碰到不要去计算,用眼睛观察一眼得出极限为∞
我试了你的方法,约掉根号2x+1最后结果也得不到1啊,这里的x是趋近于∞,不是趋近于0
我告诉你以后这种题目如何用肉眼观察,这也是教材上的方法!
形如:
lim(x→∞)[a0x^m+a1x^(m-1)+a2x^(m-2)+……+amx^1]/[b0x^n+b1x^(n-1)+b2x^(n-2)+……+bmx^1)(其中a0、a1、……、am和b0、b1、念核……、bm均为系数)
这样的极限形式有三种情况:
①当m>团凯n时,极限为∞
②当m<n时,极限为0
③当m=n时,极限为a0/b0
显然你这道题属于第一种情况,分子的最高次数是2,分母的最高次数是1,2>1,因此极限为无穷大。
所以呢,如果以后碰到这种题目,只需要观察分子的最高次数和分仔或掘母的最高次数的大小就可以了!
这种题目以后再次碰到不要去计算,用眼睛观察一眼得出极限为∞
我试了你的方法,约掉根号2x+1最后结果也得不到1啊,这里的x是趋近于∞,不是趋近于0
我告诉你以后这种题目如何用肉眼观察,这也是教材上的方法!
形如:
lim(x→∞)[a0x^m+a1x^(m-1)+a2x^(m-2)+……+amx^1]/[b0x^n+b1x^(n-1)+b2x^(n-2)+……+bmx^1)(其中a0、a1、……、am和b0、b1、念核……、bm均为系数)
这样的极限形式有三种情况:
①当m>团凯n时,极限为∞
②当m<n时,极限为0
③当m=n时,极限为a0/b0
显然你这道题属于第一种情况,分子的最高次数是2,分母的最高次数是1,2>1,因此极限为无穷大。
所以呢,如果以后碰到这种题目,只需要观察分子的最高次数和分仔或掘母的最高次数的大小就可以了!
展开全部
实际上老世用洛必达法则是可以判定这极限是不存在的,直接使碧橘用就可以了。
请注意数学求极限的过程是严格侍慧肢的,不是想当然的,似是非是的。
请注意数学求极限的过程是严格侍慧肢的,不是想当然的,似是非是的。
追问
我后来用几何画板画出函数图像发现:当x趋向正无穷的时候是1,但是当x趋向负无穷的时候是 -1, 是不是∞应该要包括+∞和-∞两种情况?如果两种情况极限值不相等是不是就说明趋向∞时极限不存在?
还有就是使用洛必达法则后发现出现了死循环,就是用两次后有回到了原题这种形式,就永远也求不出极限了,这可以说明极限不存在吗?
追答
对,趋向无限包括正负两种情况,实际上使用洛必达法则可能出现死循环,极限不存在和极限存在的三种情况,有很多论文系统深刻地探讨过这种问题,不清楚或有兴趣可以去看看研究,死循环其实就可以反映出结果了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答案错了吧,上下同时除以x结果就出来了呀,是1
追问
我后来用几何画板画出函数图像发现当x趋向正无穷的时候是1,但是当x趋向负无穷的时候是 -1,虽然这种办法比较笨,但是的确出现了两个不同的值,但这个 -1是怎么求的?
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询