判断函数f(x)=(a+1)lnx+ax2+1的单调性
2个回答
展开全部
in(x)里的x必须要>0
所以可以知道f(x)的定义域x>0 且 in(x)是单调递增的
①a>=0 →a+1>=1
ax^2是单调递增的
所以f(x)是单调递增的
②-1<a<0
(这个不太好解释,你可以尝试用定义法来算,就是任取0<x1<x2,会得到f(x1)>f(x2))
所以f(x)是单调递减的
③a<=-1 →a+1<=0 →(a+1)in(x)是单调递减的
ax^2是单调递减的 (a=-1时 a+1=0 但 -x^2在x>0的范围上是递减的)
所以f(x)是单调递减的
综上所述:a>=0,f(x)单调递增;a<0,f(x)单调递减。
所以可以知道f(x)的定义域x>0 且 in(x)是单调递增的
①a>=0 →a+1>=1
ax^2是单调递增的
所以f(x)是单调递增的
②-1<a<0
(这个不太好解释,你可以尝试用定义法来算,就是任取0<x1<x2,会得到f(x1)>f(x2))
所以f(x)是单调递减的
③a<=-1 →a+1<=0 →(a+1)in(x)是单调递减的
ax^2是单调递减的 (a=-1时 a+1=0 但 -x^2在x>0的范围上是递减的)
所以f(x)是单调递减的
综上所述:a>=0,f(x)单调递增;a<0,f(x)单调递减。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
f (x) = (a+1)lnx +ax² + 1 定义域:x>0
f ' (x) = (a+1)/x +2ax > 0
[(a+1) + 2ax²]/x>0 又x>0
∴(a+1) + 2ax² >0
当a>=0时f ' (x) > 0
即:当a>=0时 f(x) 在 定义域内单调递增。
当a<-1时 f ' (x) < 0 ∴ f(x) 在定义域内单调递减。
当-1<=a<0时 f ' (x) 的符号不好判断。
f ' (x) = (a+1)/x +2ax > 0
[(a+1) + 2ax²]/x>0 又x>0
∴(a+1) + 2ax² >0
当a>=0时f ' (x) > 0
即:当a>=0时 f(x) 在 定义域内单调递增。
当a<-1时 f ' (x) < 0 ∴ f(x) 在定义域内单调递减。
当-1<=a<0时 f ' (x) 的符号不好判断。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询