求解答 需要过程
2个回答
展开全部
(17)
(I)
a1=1
an =a1.q^(n-1) = q^(n-1)
for n>=3
an= [a(n-1)+ a(n-2)]/2
n=3
a3 = (a2+a1)/2
2q^2 =q+1
2q^2 -q-1=0
(2q-1)(q+1)=0
q=1/2 or -1
(II)
case 1: q=-1
an = (-1)^(n+1)
bn =nan
Sn = (-1)^(n+1) .n
= (n+1)/2 if n=odd
= -n/2 if n is even
case 2: q= 1/2
an = (1/2)^(n-1)
bn = n.(1/2)^(n-1)
let
S = 1.(1/2)^0+2.(1/2)^1+.....+n.(1/2)^(n-1) (1)
(1/2)S = 1.(1/2)^1+2.(1/2)^2+.....+n.(1/2)^n (2)
(1)-(2)
(1/2)S =[ 1+ 1/2+1/2^2+...+1/2^(n-1) ] - n.(1/2)^n
= 2( 1- (1/2)^n ) - n.(1/2)^n
S = 4 - 2(n+2).(1/2)^n
b1+b2+...+bn=S = 4 - 2(n+2).(1/2)^n
(I)
a1=1
an =a1.q^(n-1) = q^(n-1)
for n>=3
an= [a(n-1)+ a(n-2)]/2
n=3
a3 = (a2+a1)/2
2q^2 =q+1
2q^2 -q-1=0
(2q-1)(q+1)=0
q=1/2 or -1
(II)
case 1: q=-1
an = (-1)^(n+1)
bn =nan
Sn = (-1)^(n+1) .n
= (n+1)/2 if n=odd
= -n/2 if n is even
case 2: q= 1/2
an = (1/2)^(n-1)
bn = n.(1/2)^(n-1)
let
S = 1.(1/2)^0+2.(1/2)^1+.....+n.(1/2)^(n-1) (1)
(1/2)S = 1.(1/2)^1+2.(1/2)^2+.....+n.(1/2)^n (2)
(1)-(2)
(1/2)S =[ 1+ 1/2+1/2^2+...+1/2^(n-1) ] - n.(1/2)^n
= 2( 1- (1/2)^n ) - n.(1/2)^n
S = 4 - 2(n+2).(1/2)^n
b1+b2+...+bn=S = 4 - 2(n+2).(1/2)^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询