
1个回答
展开全部
向心力公式推导是极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。
以圆心为原点,i为x轴上的单位向量 j为y轴上的单位向量
速率为v0
则速度(矢量)
v=v0sinθi+v0cosθj
(θ为某点处与x轴的夹角)
又因为θ=ωt
v=v0sinωti+v0cosωtj
a=v'=ωv0(cosωti-sinωtj)
|a|=ωv0=rω^2
|F|=m|a|=mrω^2=(mV^2)/r=mvω=(mr4π^2)/T^2=mr4π^2f^2
以圆心为原点,i为x轴上的单位向量 j为y轴上的单位向量
速率为v0
则速度(矢量)
v=v0sinθi+v0cosθj
(θ为某点处与x轴的夹角)
又因为θ=ωt
v=v0sinωti+v0cosωtj
a=v'=ωv0(cosωti-sinωtj)
|a|=ωv0=rω^2
|F|=m|a|=mrω^2=(mV^2)/r=mvω=(mr4π^2)/T^2=mr4π^2f^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |