绝对值不等式的相关公式
绝对值重要不等式推导过程
我们知道
|x|={x,(x>0);x,(x=0);-x,(x<0);
因此,有:
-|a|≤a≤|a| ......①
-|b|≤b≤|b| ......②
-|b|≤-b≤|b|......③
由①+②得:
-(|a|+|b|)≤a+b≤|a|+|b|
即 |a+b|≤|a|+|b| ......④
由①+③得:
-(|a|+|b|)≤a-b≤|a|+|b|
即 |a-b|≤|a|+|b| ......⑤
另:
|a|=|(a+b)-b|=|(a-b)+b|
|b|=|(b+a)-a|=|(b-a)+a|
由④知:
|a|=|(a+b)-b|≤|a+b|+|-b| => |a|-|b|≤|a+b|.......⑥
|b|=|(b+a)-a|≤|b+a|+|-a| => |a|-|b|≥-|a+b|.......⑦
|a|=|(a-b)+b|≤|a-b|+|b| => |a|-|b|≤|a-b|.......⑧
|b|=|(b-a)+a|≤|b-a|+|a| => |a|-|b|≥-|a-b|.......⑨
由⑥,⑦得:
| |a|-|b| |≤|a+b|......⑩
由⑧,⑨得:
| |a|-|b| |≤|a-b|......⑪
综合④⑤⑩⑪得到有关 绝对值(absolute value)的重要不等式
|a|-|b|≤|a±b|≤|a|+|b|
要注意等号成立的条件(特别是求最值),即:
|a-b|=|a|+|b|→ab≤0
|a|-|b|=|a+b|→b(a+b)≤0
|a|-|b|=|a-b|→b(a-b)≥0
注:|a|-|b|=|a+b|→|a|=|a+b|+|b|→|(a+b)-b|=|a+b|+|b|→b(a+b)≤0
同理可得|a|-|b|=|a-b|→b(a-b)≥0
另 “→”指可双向推出
解法
解决与绝对值有关的问题(如解绝对值不等式,解绝对值方程,研究含有绝对值符号的函数等等),其关键往往在于去掉绝对值符号。而去掉绝对值符号的基本方法有二。
以下,具体说说绝对值不等式的解法:
其一为平方,所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了!
其二为讨论,所谓讨论,即x≥0时,|x|=x ;x<0时,|x|=-x,绝对值符号也没有了!
说到讨论,就是令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。
其三为数形结合法,即在数轴上将各点画出,将数转换为长度的概念求解。
广告 您可能关注的内容 |