哈夫曼编码的压缩实现
压缩代码非常简单,首先用ASCII值初始化511个哈夫曼节点:
CHuffmanNode nodes[511];
for(int nCount = 0; nCount < 256; nCount++)
nodes[nCount].byAscii = nCount;
其次,计算在输入缓冲区数据中,每个ASCII码出现的频率:
for(nCount = 0; nCount < nSrcLen; nCount++)
nodes[pSrc[nCount]].nFrequency++;
然后,根据频率进行排序:
qsort(nodes, 256, sizeof(CHuffmanNode), frequencyCompare);
哈夫曼树,获取每个ASCII码对应的位序列:
int nNodeCount = GetHuffmanTree(nodes); 构造哈夫曼树非常简单,将所有的节点放到一个队列中,用一个节点替换两个频率最低的节点,新节点的频率就是这两个节点的频率之和。这样,新节点就是两个被替换节点的父节点了。如此循环,直到队列中只剩一个节点(树根)。
// parent node
pNode = &nodes[nParentNode++];
// pop first child
pNode->pLeft = PopNode(pNodes, nBackNode--, false);
// pop second child
pNode->pRight = PopNode(pNodes, nBackNode--, true);
// adjust parent of the two poped nodes
pNode->pLeft->pParent = pNode->pRight->pParent = pNode;
// adjust parent frequency
pNode->nFrequency = pNode->pLeft->nFrequency + pNode->pRight->nFrequency; 有一个好的诀窍来避免使用任何队列组件。ASCII码只有256个,但实际分配了511个(CHuffmanNode nodes[511]),前255个记录ASCII码,而用后255个记录哈夫曼树中的父节点。并且在构造树的时候只使用一个指针数组(ChuffmanNode *pNodes[256])来指向这些节点。同样使用两个变量来操作队列索引(int nParentNode = nNodeCount;nBackNode = nNodeCount –1)。
接着,压缩的最后一步是将每个ASCII编码写入输出缓冲区中:
int nDesIndex = 0;
// loop to write codes
for(nCount = 0; nCount < nSrcLen; nCount++)
{
*(DWORD*)(pDesPtr+(nDesIndex>>3)) |=
nodes[pSrc[nCount]].dwCode << (nDesIndex&7);
nDesIndex += nodes[pSrc[nCount]].nCodeLength;
}
(nDesIndex>>3): >>3 以8位为界限右移后到达右边字节的前面
(nDesIndex&7): &7 得到最高位.
此外,在压缩缓冲区中,必须保存哈夫曼树的节点以及位序列,这样才能在解压缩时重新构造哈夫曼树(只需保存ASCII值和对应的位序列)。 解压缩比构造哈夫曼树要简单的多,将输入缓冲区中的每个编码用对应的ASCII码逐个替换就可以了。只要记住,这里的输入缓冲区是一个包含每个ASCII值的编码的位流。因此,为了用ASCII值替换编码,我们必须用位流搜索哈夫曼树,直到发现一个叶节点,然后将它的ASCII值添加到输出缓冲区中:
int nDesIndex = 0;
DWORD nCode;
while(nDesIndex < nDesLen)
{
nCode = (*(DWORD*)(pSrc+(nSrcIndex>>3)))>>(nSrcIndex&7);
pNode = pRoot;
while(pNode->pLeft)
{
pNode = (nCode&1) ? pNode->pRight : pNode->pLeft;
nCode >>= 1;
nSrcIndex++;
}
pDes[nDesIndex++] = pNode->byAscii;
}
2024-09-19 广告