求极限lim(x→0)∫(x,0)(xcost^2dx)/x
1个回答
展开全部
说明:此题是打错了!我想应该是:求极限lim(x→0)∫(x,0)(tcost^2dt)/x.
若是这样,解法如下。
解法一:原式=lim(x→0)[xcos(x²)] (0/0型,应用罗比达法则)
=0*1
=0;
解法二:原式=lim(x→0){[1/2∫(x,0)cos(t²)d(t²)]/x}
=lim(x→0){[sin(x²)/2]/x}
=lim(x→0){[(x/2)*[sin(x²)/(x²)]}
=lim(x→0){[(x/2)*lim(x→0)[sin(x²)/(x²)]
=0*1 (应用重要极限lim(x→0)(sinx/x)=1)
=0.
若是这样,解法如下。
解法一:原式=lim(x→0)[xcos(x²)] (0/0型,应用罗比达法则)
=0*1
=0;
解法二:原式=lim(x→0){[1/2∫(x,0)cos(t²)d(t²)]/x}
=lim(x→0){[sin(x²)/2]/x}
=lim(x→0){[(x/2)*[sin(x²)/(x²)]}
=lim(x→0){[(x/2)*lim(x→0)[sin(x²)/(x²)]
=0*1 (应用重要极限lim(x→0)(sinx/x)=1)
=0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询